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Abstract

In this paper we show that there exists the supremum of Newton polygons of p-
divisible groups with a given p-kernel type, and provide an algorithm determining it.

1 Introduction

We are concerned with estimating the isogeny type (=Newton polygon, cf. [10]) of a p-
divisible group X from its p-kernel X [p]. In this paper we give an optimal estimation.

We fix once for all, non-negative integers ¢ and d with r := ¢+ d > 0. Let W(= W,
be the Weyl group of the general linear group GL,. In the usual sense, we identify W
and Aut({1,...,r}). Let s; € W be the simple reflection (i,i + 1) for i = 1,...,r — 1.
Let S = {s1,...,8y—1} and set J := S\{sq}. Let W; be the subgroup of W generated by
elements of J. We denote by 7 W the set of (J,())-reduced elements of W (cf. [1], Chap. IV,
Ex. §1, 3), which are representatives of Wj\ W. A classification theory of BT’s by Kraft,
Oort, Moonen and Wedhorn says that the set of the isomorphism classes of BT;’s with
tangent-dimension d and length r is bijective to the set ? W. Note that ? W has a natural
ordering C introduced and investigated by Wedhorn [21] (see §5 for a short review).

Let w be any element of 7 W. In Corollary 2.2, we show that there exists the supremum
&(w) of Newton polygons of p-divisible groups with p-kernel type w:

e every p-divisible group whose p-kernel is of type w has Newton polygon < &(w);

e there exists a p-divisible group X such that X|[p] is of type w and the Newton polygon
of X equals &(w).

The following theorem gives us a combinatorial algorithm determining £(w), see Remark
7.1. Let u(¢) € 7 W denote the type of the p-kernel of the minimal p-divisible group H(¢)
(cf. [14] and also a review [4], §3).

Theorem 1.1. £(w) is the biggest one of Newton polygons ¢ such that u(¢) C w.

This is an unpolarized analogue of [6], Corollary II. For a more effective algorithm de-
termining the first/last slope of £(w), see [3], Theorem 4.1 for the polarized case and [4],
Corollary 1.3 for the unpolarized case. Recall that in the polarized case the existence of
the supremum &(w) follows from the irreducibility of Ekedahl-Oort strata on the moduli
space Ay of principally polarized abelian varieties ([2], Theorem 11.5). An obstruction in
the unpolarized case has been the absence of a good moduli space like A,. However using
Vasiu’s T,,-action instead, we have (Lemma 2.1) that there exists an irreducible catalogue
of p-divisible groups with a fixed p-kernel type; this clearly shows the existence of £(w).
Then Theorem 1.1 can be shown by a similar argument as in [6] (which is relatively easier



than the polarized case). Finally we mention a different approach announced by Viehmann
[20], who seems to have generalized our results in terms of the loop groups of split reductive
groups, making use of results on affine Deligne-Lusztig varieties.

Terminology

We naturally identify the category of affine schemes with the opposite category to the
category of commutative rings. We fix once for all a rational prime p. In this paper we
freely uses a part of Zink’s result [22], Theorem 9, which says that for a commutative ring R
of finite type over a field of characteristic p, there exists a categorical equivalence from the
category of p-divisible groups over R to that of nilpotent displays over R, where we follow
the terminology of [9] for displays and nilpotent displays.

2 A catalogue of p-divisible groups with a given type

Let k be an algebraically closed field of characteristic p. Let (P, Q, F), F) be a display over
k, and P = L @ T be a normal decomposition ([22], Introduction). Let G = GL(P) be
the general linear group over W (k) of degree r = ¢ + d. Let H be the paraholic subgroup
of G stabilizing @), which is a connected smooth affine group scheme over W (k). Let D,
and H,, be connected smooth affine group schemes over k such that D,,(R) = G(W,,(R))
and H,,(R) = H(W,,(R)) respectively, see [18], 2.1.4 for more details. For any truncated
Barsotti-Tate groups of level m with codimension ¢ and dimension d, its Dieudonné module
is written as (P/p™P,gF,Vg~!) for some g € D,,. Vasiu introduced an action:

Tm : Hm Xk Dm — Dma (1)

and showed in [18], 2.2.2 that the set of T,,-orbits are naturally bijective to the set of
isomorphism classes of truncated Barsotti-Tate groups of level m over k with codimension ¢
and dimension d. Let BT, (k) be the set of isomorphism classes of truncated Barsotti-Tate
groups of level m over k£ with codimension ¢ and dimension d. We have

Lemma 2.1. For any u € BT,,(k), there exists an irreducible catalogue of p-divisible groups
with p™-kernel type u, i.e., there exists a family X — S of p-divisible groups such that

(1) for any geometric point s € S, the p™-kernel of the fiber X5 is of type u;

(2) For any p-divisible group X with p™-kernel type u, there exists a geometric point s € S
such that X ~ Xs;

(3) S is irreducible and of finite type over k.

Proof. Tt suffices to show the case that « has no étale part, since every (truncated) Barsotti-
Tate group over k is the direct sum of its local part and its étale part and the decomposition
is compatible with truncations. Let N be an integer > m so that X [p"] ~ Y[p"V] implies
X ~Y for any p-divisible groups X and Y over k (cf. [15], 1.7 and [19]). Let = be the natural
map Dy — D,,, and let 7 be a section of D — Dy. Let O, be the T,,-orbit associated
to u. Since H,, is irreducible, Q, is irreducible. Since 7 is smooth with connected fibers,
771(0,) is also irreducible. Let S be the image of 7=1(Q,) by 7. Then S is irreducible and
of finite type over k. By [22], Theorem 9, we have a p-divisible groups X over S. Clearly X
satisfies the required properties. O

Corollary 2.2. There exists the supremum of Newton polygons of p-divisible groups with a
given p"-kernel type.



Proof. Let X — S be the family as in the lemma above. Let n be the generic point of S. It
follows from Grothendieck and Katz ([7], Th.2.3.1 on p. 143) that the Newton polygon of A,
is the supremum of Newton polygons of p-divisible groups with a given p™-kernel type. [

3 F-zips

Let S be a scheme of characteristic p. Let o denote the absolute Frobenius on S. For any
Os-module M we write MP) = Og ®, 05 M. Recall the definition ([12], (1.5)) of F-zip in
a particular case.

Definition 3.1. An F-zip over S is a quintuple Z = (N, C, D, p, ) consisting of locally
free Og-module N and Og-submodules C, D of N which are locally direct summands of N,
and o-linear homomorphisms ¢ : N/C — D and ¢ : C — N/D whose Og-linearizations
ot (N/C)P) — D and ¢f : CP) — N/D are isomorphisms. If S is connected, we define the
height of Z to be the rank of N and the type of Z to be a map from {0,1} to Z>( sending
0 to rk D and 1 to rk C; we will simply write the type as (rk D,rk C).

If S is the spectrum of a perfect field K, then the (covariant) Dieudonné functor D
makes an equivalence from the category of BT1’s over K to that of F-zips over K. The
F-zip (N,C, D, ¢, ) associated to a BT1-group G is given by N = D(G) with C = VN and
D = FN, and ¢ and ¢! are naturally induced by F and V respectively.

As shown by Kraft, Oort, Moonen and Wedhorn, there exists a bijection from BT (k)
to 7 W for any algebraically closed field k of characteristic p (this statement is due to [12];
also see [8], [11] and [16]). This classification is based on the fact that for any BT;-group
G over k, there uniquely exists w € 7 W such that G is isomorphic to G, defined below.
The notion of final type is useful. To a w € 7 W we associate a pair (B,0), called a final
type, cf. [4], Definition 2.6, where B is a totally ordered set {b; < ... < b,} and § is a map
B — {0,1} defined by §(b;) = 1 < w(i) < d. There uniquely exists an automorphism = = 7
of B such that 7(b’) > w(b) < §(b') > 6(b) for any b’ < b. We define G,, so that its F-zip
Zyw = (N,C,D,p,¢) is given by N = >, 5 kb (i.e., the k-vector space with basis indexed
by B) and C' = } ;51 kb, and D =} 5, o km(b) and ¢, ¢ are defined by ¢(b) = 7(b) for
b with §(b) = 0 and ¢(b) = m(b) for b with §(b) = 1.

4 Homomorphisms of F-zips

Let k£ be an algebraically closed field of characteristic p. In this section every scheme will be
over k. We first review a description of homomorphisms of F-zips for the reader’s convenience
(cf. [13], §2 and [11], §4 and also see [4], § 4.3), and show some facts used later on.

Let wq and wo be the types of Z; and Zs respectively. Let By = (B1,01) and By = (Ba, d2)
be their final types and set m; = 75, and w9 = 7s,. A finite slice w is a subset of By x By of
the form w = {(7(s1), 75 (s2)) | 1 < i < £} with |w| = £ for s; € By and sy € By satisfying
(a) 61(s1) = 1 and d2(s2) = 0, (b) 61(7wi(s1)) = da(m(s2)) for all 1 < i < £ and (c)
61(m%(s1)) = 0 and do (75 (s2)) = 1. We denote by Q, = Q,(By1, Bz) the set of finite slices of By
and By. An infinite slice w is a subset of By x By of the form w = {(7i(s1),74(s2)) |1 < < £}
with |w| = £ for s; € By and sy € By satisfying (a) s; = 7{(s1) and sy = 75(s2), (b)
§1(mi(s1)) = d2(mh(s2)) for all 1 < i < £. We denote by Qo = Qoo (B, B2) the set of infinite
slices of By and Bs. Set Q = Q(By,Bs) := Q, U Q. For each slice w, we define a group
scheme K, to be the additive group G, if w € Q, and to be Ker(F‘“" —id: G, — G,) if
w € Qoo. Let S be a k-scheme. Let w = {(7i(s1),75(s2)) | 1 <i < £} be a slice with |w| = .
For an element r € w, we denote by e(r) (= €,(r)) the integer ¢ with 0 < ¢ < ¢ satisfying
r= (7511 (s1), 75 (52)). For a € K, (S), we define a map

Stwa: Bi1x By —— K,(9) (2)



by sending r € w to a””"” and r ¢ w to 0. The functor, from the category of k-schemes
to the category of commutative groups, sending S to Homg(Z1,5, Z2,s) is represented by a
group scheme Hom(Z7, Z5); moreover there is an isomorphism as group schemes:

A PR, —— Hom(Zy,2y). (3)

we
Indeed we write B, = {b{” < --- < bV} and also write Z, = (N, C,, Dy, ¢, x) with
N, =P, kbg*). Let S be any k-scheme. An Og-homomorphism p : Ny g — N3 g, say
u(bgl)) = Zj rijbgz) with r;; € T'(S, Og) gives an element of Homg(Z1 g, Z2,5) if and only if

745 is of the form ) sty, o (bij) for a certain a € K, (5), where b;; = (bgl), bf)) € B, x Bs.
From now on we identify Hom(Z;, Z3) with @weﬂ K,. The connected component of zero in
a commutative group scheme G will be denoted by G,. Then Hom(Z;, Z3), is the product
of K, for w € Q,. We write Hom(Z1, Zs) o for @weg& K.

It is straightforward to prove

Lemma 4.1. Let Zy, Zy, Z3 be F-zips over k. The composition map
HOHI(Zl, ZQ) X HOI’H(ZQ, Zg) e HOII’I(Zl, Zg)
sends the pair of (w1,a1) and (wa2,a2) (i.e., w; € QB;, Biy1) and a; € K, for i =1,2) to

e f

Yoo(w,al ab ), where the sum is over m X wg X w3-orbits @ in wy X, wa and w = pri5(@)
and e is the minimal element of £, (pr15(@)) and f is the minimal element of ., (Pros(@)).
Here we denote by pr,; the projections By X By X B3 — B; X B; for1<i<j<3.

The next lemma shows that the ring scheme End(Z), consists of nilpotent endomor-
phisms.
Lemma 4.2. Let w € Q,(B,B). Let (b,b') be an element of w. Then we have b > b'.
Proof. By the definition of finite slice, v(b) := Y_,c d(7~!(b))27" is greater than v(b') :=
Sen 6(m7H(v"))27L. Then [5], Proposition 4.7 shows b > b'. O

Finally we look at the action of End(Z), on Hom(Z, Z). Let Q(B,B;) be the subset
of Q(B, By) consisting of w € Q(B, B1) with pr(w) C {bs,...,b.}, where pr is the projection
B x B; — B. We define a subgroup scheme Fil" Hom(Z, Z;) of Hom(Z, Z;) by

Fil' Hom(Z, Z1) = € K. (4)
weN? (B,Bl)
From the lemmas above, we have

Corollary 4.3. The composition map induces

End(Z), x Fil' Hom(Z, Z,) —— Fil""' Hom(Z, Z,).

5 Specialization of F-zips

We recall Wedhorn’s results in [21].

Definition 5.1. Let w and w’ be elements of 7 W. We say w C w’ if there exists a family
Z — S of F-zips over an irreducible scheme S such that the isomorphism type of a special
fiber is w and that of the generic fiber is w’'.

Let x = wj : W — W be the map sending i to i +c if i < d and i to i — d if i > d. Define
§:W—-Whyd(u)=z-u -z~

)
Theorem 5.2 ([21]). Let w,w’ € 7W. We have w C w' if and only if there exists u € W
such that u='wé(u) is less than or equal to w' with respect to the Bruhat order.



6 Lifting of F'-zips

Let R be a commutative ring of characteristic p. Let I and V' denote the Frobenius and
Verschiebung on W (R). Write I := VW (R). Let M = (P,Q, F,F) be a display over R.
One can associate to M an F-zip M/IrM, which is defined as follows. Let P = L & T be
a normal decomposition of P with Q@ = L @ IgT (cf. [22], Introduction). Write M/IrM =
(N,C,D,p,$). Then we define N = P/IgrP and C = Q/IrP ~ L/IzrL, and D is the
submodule of N generated by the image of F': T'— P — N, and ¢ and ¢ are canonically
induced by F and F respectively.

Lemma 6.1. Let Z be an F-zip over S. Let s be any closed point of S. Let M be a display
over s. There is an open affine subscheme U = Spec(R) of S with s € U and a display M
over R such that MJIgM ~ Zr and Mz ~ M.

Proof. Write Z = (N, C, D, ¢, ). Let U be an affine open subscheme of S containing s over
which C and D are direct summands of N, say N = C@ E, and C, D and F are free. Write
U = Spec(R) and s = Spec(R/m). We replace S by U. We have an f-linear homomorphism

¢: CoE —"— CoN/C 2%, NND&D —>— N.

Let £ and 7 be free W(R)-modules such that L/IrL ~C and T/IRT ~ E. Pt P=LDT
and @ = LB IRT. Let M = (P,Q, F, F) and L @& T a normal decomposition of P, and
let &g be E@® F : L& T — P obtained in [22], Lemma 9; one can identify L and T with
L/W(m)L and 7 /W (m)7T respectively.

Since the canonical map from GL,.(W(R)) to the fiber product of GL,.(R) — GL,.(R/m)
and GL,(W(R/m)) — GL,(R/m) is clearly surjective, there exists an ¥-linear homomor-
phism

¢: LT —— P

such that (® mod Ig) = ¢ and (® mod W (m)) = ®¢. Set F =Po (V1@id): LT — P
and define F : £ @ IrT — P by sending [ + Vwt to ®(1) + wd(t) for every l € L, t € T
and w € W(R). Then we have a display M = (P, Q, F, ), which satisfies the required
properties. O

Corollary 6.2. Let w and w' be elements of 7 W. If w C w', then we have &(w) < &(w').

Proof. Assume w C w’, i.e., there exists an F-zip Z over an irreducible scheme S such that
the type of the fiber of the generic point 7 is w’ and the type of the fiber of a special point s
is w. By Corollary 2.2, there exists a display M over s such that the Newton polygon of M is
&(w). Applying Lemma 6.1 to Z and M, there exist an open affine subscheme U = Spec(R)
of S containing s and a display M over R such that M/IgM ~ Zp and M, ~ M. Tt
follows from Grothendieck-Katz ([7], Th.2.3.1 on p.143) that &(w) is less than or equal to
the Newton polygon, say ¢, of M,,. By the definition of £(w’), we have ¢ < &{(w’). O

7 A reduction of the problem

Let w be any element of 7 W. Let £(w) be the Newton polygon introduced in §1. Its existence
is showed in Corollary 2.2. The purpose of this paper is to prove Theorem 1.1:

§(w) = max{C | p(¢) Cw}, ()

where ( is over Newton polygons Y (my,n;) with > m; =d and > n; =c.

Remark 7.1. This gives, thanks to Theorem 5.2, a purely combinatorial algorithm deter-
mining &(w) for a given w. See [5], Corollary 4.8 for a way to compute u(¢).



We first prove that Theorem 1.1 follows from the next proposition. The subsequent
sections are devoted to the proof of this proposition.

Proposition 7.2. Assume that w is not minimal. Then there exists a non-constant family
of isogenies of p-divisible groups

H(¢(w))s —— X (6)
over S such that the isomorphism type of Xs[p] is w for every geometric point s of S.

Proof of (Proposition 7.2 = Theorem 1.1). We first claim that Theorem 1.1 is equivalent
to

p((w)) C w. (7)

Clearly Theorem 1.1 implies (7). Suppose (7). Put 2 = {¢ | u(¢) C w}. We want to show
that £(w) is the biggest element of Z. Clearly (7) says {(w) € E. Let ¢ be any element of
=. Then we have £(11(€)) < &(w) by Corollary 6.2. Note that we have £(1(¢)) = ¢ by [14],
(1.2) Theorem. Thus we have ¢ < &(w).

Let us prove (7) under the assumption that Proposition 7.2 holds. We first consider the
case that w is minimal, say w = pu(¢) the type of H(¢)[p]. Then we have {(w) = ¢ by [14]
(1.2), and therefore we have pu(£(w)) = w; hence (7) holds in this case. Assume that w is
not minimal. Let M be the moduli space of quasi-isogenies H({(w)) — Y of p-divisible
groups, see [17], Chapter 2. Let Z be an irreducible component of M,.q containing the
generic point of the family (6). Note that Z is projective ([17], Proposition 2.32). Let S,,(Z)
be the locally closed subvariety consisting of isogenies H({(w)) — X where X|[p] is of type
w. It is known that S, (Z) is quasi-affine (cf. [18], 1.2 (g)). By the assumption, we have
dim S, (Z) > 1. Hence there exists w’ € W such that w’ C w and &(w’) = &(w). This
shows in particular that the final type v with £(v) = &(w) which is “minimal w.r.t. C” is
minimal. We use induction on w with respect to C. Now we assume p(€(w’)) C w’. Then
we have p(£(w)) = p(é(w')) C w' C w. O

8 Extensions by a minimal p-divisible group

Let £ be a Newton polygon. Let o = (m1,n1) be a segment of &, i.e., mi/(my +nq1) is a
slope of ¢ and ged(mq,mn1) = 1. Let & be the Newton polygon such that £ = &' + ¢. Let
Z1 = Z(0)s, where Z(p) is the F-zip of H(p)[p] over k. Let

0 VA z 1 .z 0 (8)

be a short exact sequence of F-zips over a reduced k-scheme S. Write Z = (N,C, D, ¢, )
and Z; = (N1,C4, D1, ¢1,¢1) and so on. That f is surjective means that f : N — N; and
f: C — C are surjective, and also the injectivity is the dual notion of this surjectivity. Let
M’ = (P',Q,F',F’') be any display lifting Z’ with an isogeny p’ : M(£')s — M’, where
M (&) is the the display of H({'). Let P/ = L' & T’ be a normal decomposition.

Proposition 8.1. For any closed point s € S, there exist an open affine subscheme U
of S with s € U and a finite surjective morphism Spec(R) — U such that there exist
a display M over R with an isogeny p : M(§)rp — M and a surjective homomorphism
¢ M — (Mi)g := M(o)r with kernel My, and an isomorphism 6 : M/IgpM — Zg such
that we have the commutative diagrams

0 —— M({)rp —— M(€r —— M(0)p —— 0

T o

¢

0 —— Mp, —— —— (Mi)r —— 0



and

0 —— Mly/IpMly —— M/IgM —2— (My)p/Tn(My)g —— 0
| - | o

Ir

0 ——  Zyy ——  Zp (Z1)r 0.

Proof. Let u = min{mq,n1}. Recall [4], Lemma 3.3 that the Dieudonné module M (p) is
generated over the Dieudonné ring by X; (i € Z/uZ) and all relations are generated by
FeiX; — VB+1 X, = 0 for some non-negative integers a;, 3;. Put z; :== V5 X,.

Let s be any closed point of S. Let U = Spec(R) be an affine open subscheme of S
containing s. We may replace S by U. We choose a lift Y; € N of X; € N; for each
i € ZJuZ. Let ¢ be the composition of N — N/D and (¢#)~' : N/D — C®). After
replacing R by its finite cover, we can find g, ; € C lifting VIiX,; for 0 < j < f3; such that
the composition 1/)(”]71) o---01)® o sends Y; to 1®Yy; ; € R®pi R C. We put g, :==7; 3,
After replacing R by its open affine subscheme, we can find a section of N — N/D, defining
alift p: C — N of ¢ : C — N/D, such that 3% ~I(7,) = T;,j- 1t follows from the exact
sequence (8) that N is generated by elements of N’ and $*F; (0 < s < f3;) and ¢" 3”7,
(0 < r < a;) with relations

@ai@ﬁiyi —Yir1 = Ui (11)
for some T; € N’, where C' is generated over W(R) by elements of C’ and @°7y; (0 < s < ),
and D is generated over W (R) by elements of D’ and ¢"¢%, (1 <r < ;).

Put Wo(R) = Q® W(R). Write & = Yi_,(my,n;). Then the isogeny p’ induces an

isomorphism

¢

Wo(R)@ M/ —~— @WQ(R)®M((ml,nl)). (12)
1=2

Let e, € Wg(R) ® M’ be the highest element of M ((my,n;)), see [4], Section 3.1. Recall

that the ring of endomorphisms of Hy,, ,, is described as Ej := W (F ,m;+n, )0/ (0 —p)

for a uniformizer 6; of End(Hp, n,). Let Ej(R) be the W(R)-module W(R) ® E; and set

Eio(R) := Q®E;(R). We extend the action of the Frobenius ¢ on W (R) to that on E; g(R)

by the rule 6 = ;. Note the Wg(R)-homomorphism

Eio(R) —— Wo(R) @ M((m,n)) (13)

defined by sending f(6;) to f(6;)e; is isomorphic.

We have to define M = (P, Q, F, ]-') Note that P should have a normal decomposition
L®T. We will define £ to be the W(R)-submodule of Wg(R) ® (P; @ P’) generated by
elements of L%, and F"Ffiy; (0 <7 < a;) and T will be defined to be the W (R)-submodule
of (P, ® P') ® Wg(R) generated by elements of T and F*y; (0 < s < ;) fori =1,2,--- ,n
where y; € (P, ® P') ® Wg(R) is of the form:

t
yi=ai+ Y aqel (14)
=2

for some a;; € Ejg(R), which will be chosen later so that M has the required properties.
Here M is defined by P = L& T and Q = £ & IzxT with F and F naturally extending
F and F on M(€)g. Since M}, contains M(£')g, it suffices to find ay € Ejg(R) modulo
I, Ei(R) for a sufficiently large natural number p (> max{m;3;;i € Z/uZ}).



Let v; € P’ be a lift of 7;. We define b; € E; g(R) by 2222 bie; = v;. It suffices to show
that there exists a solution {a;} (i € Z/uZ, 2 <1 < t) satisfying

t
FmFﬁ’yz — Yiy1 = Z bier (mod IR#M(f/)R). (15)
=2

Comparing the coefficients of e; of the both sides of (15), we obtain
aZy e g =by (mod Ig,Ei(R)). (16)

for i € Z/uZ. Since [ is the same in each equation, it suffices to solve the simultaneous
equations for each [. Writing a;, b;, n, m and 6 for a;;, by, n;, m; and ; respectively, we
have S (@B s
af T g (maimmB) g = (mod Ig ,Ei(R)) (17)
for some r € Eyg(R). It suffices to show that this has a solution a; € Ejg(R) for a finite
cover Spec(R) of S; then we get a required solution {a;}¥_; from (16).
Write z := a; and p := o2i=1(®*F)_ Note o # 1 by o, 5; > 0. We also put € :=
Yo (nay — mp;). Then (17) is written as 290 — z = r (mod Ig,E;(R)). If € > 0,
we have a solution z = Z:?io(—r)@E 9. Also if € < 0, let ¢ be a sufficient large integer

such that 67° € Ig ,E;(R), and we replace R so that RP" = R; then we have a solution

z = Y0 lre "9l Finally we consider the case e = 0. Write z = Y7571 2,01 and

r = Z?z{)nfl ;0" with z;,r; € Wo(R). It suffices to solve zf — z; = r; (mod Ig,,) for each

0 <i < m+n. Let v; be the biggest non-negative integer v such that r; € p*W(R). We

replace Spec(R) by its finite (purely inseparable) cover so that we have R~ = R. There

exist elements ¢; of R for all integers j > ; such that 2; = 3372 v [t;] is a solution. Indeed,
v’

putting zi; := 35, ;" [ty], we can find ¢; successively so that zf; — z;; = r; (modIg ;).

Let j > v; and suppose that we have already got such ¢ for j/ < j. Since ¢ # 1, there
exists a solution ¢; € R of the Artin-Schreier equation t7 —t; = V(i — z{;+zi;) mod IR).

Then clearly z; := Z;‘;}l v [t;] is a solution of z{ — z; = r; (mod Ig,,). O

9 Proof of Proposition 7.2

Let w € 7W. Let (my,n1) be the first segment of £(w). By the existence of £(w), there
exists a p-divisible group X over an algebraically closed field k of characteristic p such that
X|[p] is of type w and the Newton polygon of X is {(w). Write M = D(X). Choose an
embedding + : M — M ({(w)) and let 5: M ({(w)) — My, n, be the natural projection. Put
My = j04(M). Let fo: X — X3 be the homomorphism of p-divisible groups corresponding
to M — M. Let X{) be the kernel of fy. Note X|) is a p-divisible group. Thus we have an
exact sequence of p-divisible groups

0 X} x I x 0. (18)
Lemma 9.1. X, is minimal, i.e., X1 ~ Hp,\ ;.

Proof. Recall [4], Corollary 5.4, whose dual is as follows. Let A, be the optimal lower bound
of the first Newton slopes of p-divisible groups with p-kernel type v for each v € 7 W; then
we have

Ay = min{m/(m+n) | Gy 0 2 H,, n[pla for some alg. closed field Q}. (19)

Note that A, is equal to the first slope of £(v).



Let w and wy be the final types of X [p] and X [p] respectively. Since X [p] - X1[p], i.e.,
Guw.k = Guy i, we have Ay, < Ay, by (19). By the construction of X, the (first) Newton
slope of X7 is Ay; hence we have A\, > A,,. Thus A\, = A,,. Then (19) implies that
there exists a surjective homomorphism H,, n, [Plo — Guw, . for some Q = Q. This is an
isomorphism, since Hy,, n, [p] and Gy, have the same rank (= mj + nq). (|

We use induction on the rank of w to prove Proposition 7.2. Assume that w is not
minimal. It suffices to show the case that

*) G has no direct factor which is isomorphic to Hy,, n, [p]-

Indeed if Gy = Gy ® Hpyy ny [p], then v is not minimal and our problem can be reduced
to the case v. Hence we assume (*) from now on. Let Z and Z; be F-zips of X[p| and
X1[p] respectively. Let B and By be the final types of Z and Z; respectively. Now (*)
implies that Q. (B,B1) = 0. Consider the space X := Hom(Z, Z;), which is isomorphic to
HwEQn(B,Bl) K,; hence X is irreducible. Let f be the universal homomorphism Zy, — (Z;)s.

Lemma 9.2. LetT — X be any dominant morphism of k-schemes. Then fr is not “constant
up to Aut(Zr)”. Here we say that fr is constant up to Aut(Zr) if there exists a section
x = Spec(k) — T such that fr = (fz)r o k for an automorphism k of Zp.

Proof. Let x = Spec(k) — T be any section and x any automorphism of Zz. Let i be the
largest integer such that Fil' Hom(Z, Z1) = Hom(Z, Z;). Since (B, B;) consists of finite
slices, we have dimFil"** Hom(Z, Z;) < dimHom(Z,Z;). We write k = Kk, + koo with
ko € End(Z)o(T) and koo € End(Z)oo(T). It follows from Corollary 4.3 that (fy)r o % is in
Fil"™ Hom(Z, Z1)(T) + (fe )1 © oo Since End(Z)s is discrete, koo factors through Spec(k).
Hence the dimension of the scheme-theoretic image of (f,)rox : T'— Hom(Z, Z7) is less than
or equal to dim Fil'™ Hom(Z, Z;). On the other hand, the morphism fr : T — Hom(Z, Z;)
is dominant. Hence we have fr # (f.)7 o k. O

Let 7 denote the generic point of ¥ and let w’ be the type of the kernel of f,. Let U
be the open subvariety of ¥ consisting of u € U such that f, is surjective and the kernel of
fu 1s of type w’. Choose a finite surjective morphism S — U which trivializes Z’ := ker py,
e, Z§ ~ (Zy)s.

0 —— (Zu)s —— Zs —L5 (Z))s — 0. (20)

By Corollary 2.2, there exists a display M’ over k such that M'/IM' ~ Z,,» and the Newton
polygon of M’ is £(w’). Choose an isogeny M (£(w')) — M'. Put

¢ = ¢&(w') + (ma,na). (21)

Applying the result of §8 to (20), for a finite surjective morphism Spec(R) — S, we obtain
an isogeny
p: M(QOr —— M (22)

with ¢ : M — (M;)g and 0 : M/IpM ~ Zg satisfying the commutative diagrams (9) and
(10).
Lemma 9.3. We have ( = £{(w).

Proof. Since M has Newton polygon ¢ and p-kernel type w. Hence we have ¢ < &(w) by
the definition of £(w). Let w( be the type of X{[p]. Since wj C w’, we have &(w}) < &(w')
by Corollary 6.2. Note the Newton polygon &(w) of X is equal to {(w() + (m1,n1). This is
less than or equal to £(w’) 4+ (mq1,n1) = (. O

It remains to show



Lemma 9.4. p is not constant.

Proof. Applying Lemma 9.2 to 7" := Spec(R) — ¥, we have that fr is not constant up to
Aut(Zg). Tt follows from the diagram (10) that ¢ is non-constant; hence so is ¢. Then we

have the lemma by the diagram (9). O
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