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Abstract

In this paper we show that there exists the supremum of Newton polygons of p-
divisible groups with a given p-kernel type, and provide an algorithm determining it.

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. We are concerned with esti-
mating the isogeny type (=Newton polygon, cf. [11]) of a p-divisible group X over k from
its p-kernel X[p]. In this paper we give an optimal estimation.

We fix once for all, non-negative integers c and d with r := c + d > 0. Let W(= Wr)
be the Weyl group of the general linear group GLr. In the usual sense, we identify W
and Aut({1, . . . , r}). Let si ∈ W be the simple reflection (i, i + 1) for i = 1, . . . , r − 1.
Let S = {s1, . . . , sr−1} and set J := S \{sd}. Let WJ be the subgroup of W generated by
elements of J. We denote by J W the set of (J, ∅)-reduced elements of W (cf. [1], Chap.
IV, Ex. §1, 3), which are the shortest representatives of WJ \W. A classification theory of
BT1’s by Kraft, Oort, Moonen and Wedhorn says that the set of the isomorphism classes of
BT1’s with tangent-dimension d and length r is bijective to the set J W. Note that J W has
a natural ordering ⊂ introduced and investigated by He [7], also see Wedhorn [22] (we shall
give a short review: Theorem 3.6).

Let us explain our main results: Theorem 1.1 combined with Corollary 2.2. Let w be any
element of J W. In Corollary 2.2 we show that there exists the supremum ξ(w) of Newton
polygons of p-divisible groups with p-kernel type w:

• every p-divisible group whose p-kernel is of type w has Newton polygon ≺ ξ(w);

• there exists a p-divisible group X such that X[p] is of type w and the Newton polygon
of X equals ξ(w).

Theorem 1.1 below gives us a combinatorial algorithm determining ξ(w), see Remark 5.1.
For a Newton polygon ζ, let µ(ζ) ∈ J W denote the type of the p-kernel of the minimal
p-divisible group H(ζ) having Newton polygon ζ (cf. [15] and also a review [4], §3).

Theorem 1.1. ξ(w) is the biggest one of the Newton polygons ζ with µ(ζ) ⊂ w.

We shall see in §5 that this theorem follows from Proposition 5.2. The last two sections
are devoted to the proof of Proposition 5.2. The theorem is an unpolarized analogue of [6],
Corollary II. For a more effective algorithm determining the first/last slope of ξ(w), see [3],
Theorem 4.1 for the polarized case and [4], Corollary 1.3 for the unpolarized case. In the
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polarized case, the existence of the supremum ξ(w) follows from the fact that any Ekedahl-
Oort stratum on the moduli space Ag of principally polarized abelian varieties is irreducible
if it is not contained in the supersingular locus ([2], Theorem 11.5). An obstruction in
the unpolarized case has been the absence of a good moduli space like Ag. However using
Vasiu’s Tm-action instead, we have (Lemma 2.1) that there exists an irreducible catalogue
of p-divisible groups with a fixed p-kernel type; this clearly shows the existence of ξ(w).
Then Theorem 1.1 can be shown by a similar argument as in [6] (which is relatively easier
than the polarized case). Finally we mention a different approach announced by Viehmann
[21], who seems to have generalized our results in terms of the loop groups of split reductive
groups, making use of results on affine Deligne-Lusztig varieties.

Terminology

We naturally identify the category of affine schemes with the opposite category to the
category of commutative rings. We fix once for all a rational prime p. In this paper we
freely use a part of Zink’s result [23], Theorem 9, which says that for a commutative ring R
of finite type over a field of characteristic p, there exists a categorical equivalence from the
category of formal p-divisible groups over R to that of nilpotent displays over R, where we
follow the terminology of [10] for displays and nilpotent displays.

2 A catalogue of p-divisible groups with a given type

Let k be an algebraically closed field of characteristic p. Let (P,Q, F, Ḟ ) be a display over
k, and P = L⊕ T be a normal decomposition ([23], Introduction), where L and T are free
W (k)-modules. Let c and d be the ranks of L and T respectively. Let G = GL(P ) be
the general linear group over W (k) of degree r = c + d. Let H be the parahoric subgroup
of G stabilizing Q, which is a connected smooth affine group scheme over W (k). Let Dm

and Hm be connected smooth affine group schemes over k such that Dm(R) = G(Wm(R))
and Hm(R) = H(Wm(R)) respectively, see [19], 2.1.4 for more details. For any truncated
Barsotti-Tate group of level m with codimension c and dimension d, there exists a g ∈
Dm such that its Dieudonné module is isomorphic to the Wm(k)-module P/pmP with the
Frobenius and the Verschiebung defined by gF and V g−1 respectively. Vasiu introduced an
action:

Tm : Hm ×k Dm −−−−→ Dm, (1)

and showed in [19], 2.2.2 that the set of Tm-orbits is naturally bijective to the set of iso-
morphism classes of truncated Barsotti-Tate groups of level m over k with codimension c
and dimension d. Let BTm(k) be the set of isomorphism classes of truncated Barsotti-Tate
groups of level m over k with codimension c and dimension d. We have

Lemma 2.1. For any u ∈ BTm(k), there exists an irreducible catalogue of p-divisible groups
with pm-kernel type u, i.e., there exists a family X → S of p-divisible groups such that

(1) for any geometric point s ∈ S, the pm-kernel of the fiber Xs is of type u;

(2) For any p-divisible group X over k with pm-kernel type u, there exists an s ∈ S(k)
such that X ≃ Xs;

(3) S is irreducible and of finite type over k.

Proof. It suffices to consider the case that u has no étale part, since every (truncated)
Barsotti-Tate group over k is the direct sum of its local part and its étale part and the
decomposition is compatible with truncations. Let N be an integer ≥ m so that X[pN ] ≃
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Y [pN ] implies X ≃ Y for any p-divisible groups X and Y over k (cf. [16], 1.7 and [20]).
Let π be the natural map DN → Dm. Let D be the (group) scheme over k such that
D(R) = GL(W (R) for any k-algebra R, and let τ be a section of D → DN as a morphism of
schemes. Let Ou be the Tm-orbit associated to u. Since Hm is irreducible, Ou is irreducible.
Since π is smooth with connected fibers, π−1(Ou) is also irreducible. Let S be the image of
π−1(Ou) by τ . Then S is irreducible and of finite type over k. By [23], Theorem 9, we have
a p-divisible group X over S. Clearly X satisfies the required properties.

Corollary 2.2. There exists the supremum of Newton polygons of p-divisible groups with
the given pm-kernel type.

Proof. Let X → S be the family as in the lemma above. Let η be the generic point of S. It
follows from Grothendieck and Katz ([8], Th. 2.3.1 on p. 143) that the Newton polygon of Xη

is the supremum of Newton polygons of p-divisible groups with a given pm-kernel type.

3 Preliminaries on F -zips

In this section, we collect some basic facts on F -zips which we shall use later on.
We first recall the definition ([13], (1.5)) of F -zip in a particular case. Let S be a scheme

of characteristic p. Let σ denote the absolute Frobenius on S. For any OS-module M we
write M (p) = OS ⊗σ,OS

M .

Definition 3.1. An F -zip over S is a quintuple Z = (N,C,D, φ, φ̇) consisting of locally
free OS-module N and OS-submodules C,D of N which are locally direct summands of N ,
and σ-linear homomorphisms φ : N/C → D and φ̇ : C → N/D whose OS-linearizations
φ♯ : (N/C)(p) → D and φ̇♯ : C(p) → N/D are isomorphisms. If S is connected, we define
the height of Z to be the rank of N and the type of Z to be a map from {0, 1} to Z≥0 sending
0 to rkD and 1 to rkC; we will simply write the type as (rkD, rkC).

If S is the spectrum of a perfect field K, then the (covariant) Dieudonné functor D
makes an equivalence from the category of BT1’s over K to that of F -zips over K. The
F -zip (N,C,D, φ, φ̇) associated to a BT1-group G is given by N = D(G) with C = V N and
D = FN , and φ and φ̇−1 are naturally induced by F and V respectively.

Let k be an algebraically closed field of characteristic p. Let c, d, r and J W be as in
Introduction. As shown by Kraft, Oort, Moonen and Wedhorn, there exists a bijection from
BT1(k) to

J W (this statement is due to [13]; also see [9], [12] and [17]). This classification
is based on the fact that for any BT1-group G over k, there uniquely exists w ∈ J W such
that G is isomorphic to Gw defined below. To a w ∈ J W we associate a pair (B, δ), called a
final type, cf. [4], Definition 2.6, where B is a totally ordered set {b1 < . . . < br} and δ is a
map B → {0, 1} defined by δ(bi) = 1 ⇔ w(i) ≤ d. There uniquely exists an automorphism
π = πδ of B such that π(b′) > π(b) ⇔ δ(b′) > δ(b) for any b′ < b. We define Gw so
that its F -zip Zw = (N,C,D,φ, φ̇) is given by N =

⊕
b∈B kb (i.e., the k-vector space with

basis indexed by B) and C =
⊕

δ(b)=1 kb, and D =
⊕

δ(b)=0 kπ(b) and φ, φ̇ are defined by

φ(b) = π(b) for b with δ(b) = 0 and φ̇(b) = π(b) for b with δ(b) = 1.
Next we review a description of homomorphisms of F -zips over k for the reader’s conve-

nience (cf. [14], §2 and [12], §4 and also see [4], § 4.3), and show some facts used later on. Let
Z1 and Z2 be two F -zips over k. Let w1 and w2 be the types of Z1 and Z2 respectively and
let B1 = (B1, δ1) and B2 = (B2, δ2) be their final types. Set π1 = πδ1 and π2 = πδ2 . A finite
slice ω is a subset of B1 ×B2 of the form ω = {(πi

1(s1), π
i
2(s2)) | 1 ≤ i ≤ ℓ} with |ω| = ℓ for

s1 ∈ B1 and s2 ∈ B2 satisfying (a) δ1(s1) = 1 and δ2(s2) = 0, (b) δ1(π
i
1(s1)) = δ2(π

i
2(s2))

for all 1 ≤ i < ℓ and (c) δ1(π
ℓ
1(s1)) = 0 and δ2(π

ℓ
2(s2)) = 1. We denote by Ωo = Ωo(B1,B2)

the set of finite slices of B1 and B2. An infinite slice ω is a subset of B1 × B2 of the form
ω = {(πi

1(s1), π
i
2(s2)) | 1 ≤ i ≤ ℓ} with |ω| = ℓ for s1 ∈ B1 and s2 ∈ B2 satisfying (a)
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s1 = πℓ
1(s1) and s2 = πℓ

2(s2), (b) δ1(π
i
1(s1)) = δ2(π

i
2(s2)) for all 1 ≤ i < ℓ. We denote by

Ω∞ = Ω∞(B1,B2) the set of infinite slices of B1 and B2. Set Ω = Ω(B1,B2) := Ωo ⊔ Ω∞.
For each slice ω, we define a group scheme Kω over k to be the additive group Ga over k
if ω ∈ Ωo and to be Ker(F |ω| − id : Ga → Ga) if ω ∈ Ω∞. Let S be a k-scheme. Let
ω = {(πi

1(s1), π
i
2(s2)) | 1 ≤ i ≤ ℓ} be a slice with |ω| = ℓ. For an element r ∈ ω, we denote

by ε(r) (= εω(r)) the integer ε with 0 ≤ ε < ℓ satisfying r = (πε+1
1 (s1), π

ε+1
2 (s2)). For

a ∈ Kω(S), we define a map

stω,a : B1 ×B2 −−−−→ Kω(S) (2)

by sending r ∈ ω to ap
ε(r)

and r ̸∈ ω to 0. The functor, from the category of k-schemes
to the category of commutative groups, sending S to HomS(Z1,S , Z2,S) is represented by a
group scheme Hom(Z1, Z2) over k; moreover there is an isomorphism as group schemes over
k:

Λ :
⊕
ω∈Ω

Kω
∼−−−−→ Hom(Z1, Z2). (3)

Indeed, for ∗ = 1, 2, we writeB∗ = {b(∗)1 < · · · < b
(∗)
r∗ } and also write Z∗ = (N∗, C∗, D∗, φ∗, φ̇∗)

with N∗ =
⊕r∗

i=1 kb
(∗)
i . Let S be any k-scheme. An OS-homomorphism µ : N1,S → N2,S , say

µ(b
(1)
i ) =

∑
j rijb

(2)
j with rij ∈ Γ(S,OS) gives an element of HomS(Z1,S , Z2,S) if and only if

rij is of the form
∑

ω∈Ω stω,a(bij) for a certain a ∈ Kω(S), where bij = (b
(1)
i , b

(2)
j ) ∈ B1×B2.

From now on we identify Hom(Z1, Z2) with
⊕

ω∈Ω Kω. The connected component of zero in
a commutative group scheme H will be denoted by Ho. Then Hom(Z1, Z2)o is the product
of Kω for ω ∈ Ωo. We write Hom(Z1, Z2)∞ for

⊕
ω∈Ω∞

Kω.
It is straightforward to prove

Lemma 3.2. Let Z1, Z2, Z3 be F -zips over k. The composition map

Hom(Z1, Z2)×Hom(Z2, Z3) −−−−→ Hom(Z1, Z3)

sends the pair of (ω1, a1) and (ω2, a2) (i.e., ωi ∈ Ω(Bi,Bi+1) and ai ∈ Kωi for i = 1, 2) to∑
ω̃(ω, a

pe

1 a
pf

2 ), where the sum is over π1 × π2 × π3-orbits ω̃ in ω1 ×B2 ω2 and ω = pr13(ω̃)
and e is the minimal element of εω1(pr12(ω̃)) and f is the minimal element of εω2(pr23(ω̃)).
Here we denote by prij the projections B1 ×B2 ×B3 → Bi ×Bj for 1 ≤ i < j ≤ 3.

The next lemma shows that the ring scheme End(Z)o consists of nilpotent endomor-
phisms.

Lemma 3.3. Let ω ∈ Ωo(B,B). Let (b, b′) be an element of ω. Then we have b > b′.

Proof. By the definition of finite slice, ν(b) :=
∑

l∈N δ(π
−l(b))2−l is greater than ν(b′) :=∑

l∈N δ(π
−l(b′))2−l. Then [5], Proposition 4.7 shows b > b′.

For later use, we look at the action of End(Z)o on Hom(Z,Z1). Let Ωi(B,B1) be the
subset of Ω(B,B1) consisting of ω ∈ Ω(B,B1) with pr(ω) ⊂ {bi, . . . , br}, where pr is the
projection B ×B1 → B. We define a subgroup scheme Fili Hom(Z,Z1) of Hom(Z,Z1) by

Fili Hom(Z,Z1) =
⊕

ω∈Ωi(B,B1)

Kω. (4)

From the lemmas above, we have

Corollary 3.4. The composition map induces

End(Z)o × Fili Hom(Z,Z1) −−−−→ Fili+1 Hom(Z,Z1).

4



At the end of this section, we recall Wedhorn’s result ([22]) on specializations of F -zips.

Definition 3.5. Let w and w′ be elements of J W. We say w ⊂ w′ if there exists an F -zip
over an irreducible scheme of characteristic p such that the generic fiber is of type w′ and
there exists a closed point such that the fiber over that point is of type w.

Let x = wJ
0 : W → W be the map sending i to i+ c if i ≤ d and i to i−d if i > d. Define

δ : W → W by δ(u) = x · u · x−1.

Theorem 3.6 ([22]). Let w,w′ ∈ J W. We have w ⊂ w′ if and only if there exists u ∈ WJ

such that u−1wδ(u) is less than or equal to w′ with respect to the Bruhat order.

4 Lifting of F -zips

Let R be a commutative ring of characteristic p. Let F and V denote the Frobenius and
Verschiebung on W (R). Write IR := VW (R). Let M = (P,Q, F, Ḟ ) be a display over R.
One can associate to M an F -zip M/IRM , which is defined as follows. Let P = L⊕ T be a
normal decomposition of P with Q = L⊕IRT (cf. [23], Introduction). We defineM/IRM to
be (N,C,D, φ, φ̇) where N = P/IRP and C = Q/IRP ≃ L/IRL, and D is the submodule
of N generated by the image of F : T → P → N , and φ and φ̇ are canonically induced by
F and Ḟ respectively.

Lemma 4.1. Let Z be an F -zip over S. Let s be any closed point of S. Let M be a display
over s. There is an open affine subscheme U = Spec(R) of S with s ∈ U and a display M
over R such that M/IRM ≃ ZR and Ms ≃M .

Proof. Write Z = (N,C,D, φ, φ̇). Let U be an affine open subscheme of S containing s over
which C and D are direct summands of N , say N = C⊕E, and C, D and E are free. Write
U = Spec(R) and s = Spec(R/m). We replace S by U . We have an F -linear homomorphism

ϕ : C ⊕ E
∼−−−−→ C ⊕N/C

φ̇⊕φ−−−−→ N/D ⊕D
∼−−−−→ N.

Let L and T be freeW (R)-modules such that L/IRL ≃ C and T /IRT ≃ E. Put P = L⊕T
and Q = L ⊕ IRT . Let M = (P,Q, F, Ḟ ) and L ⊕ T a normal decomposition of P , and
let Φ0 be Ḟ ⊕ F : L ⊕ T → P obtained in [23], Lemma 9; one can identify L and T with
L/W (m)L and T /W (m)T respectively.

Since the canonical map from GLr(W (R)) to the fiber product of GLr(R) → GLr(R/m)
and GLr(W (R/m)) → GLr(R/m) is clearly surjective, there exists an F -linear homomor-
phism

Φ : L ⊕ T −−−−→ P
such that (Φ mod IR) = ϕ and (Φ mod W (m)) = Φ0. Set F = Φ ◦ (V 1⊕ id) : L⊕ T → P
and define Ḟ : L ⊕ IRT → P by sending l + V wt to Φ(l) + wΦ(t) for every l ∈ L, t ∈ T
and w ∈ W (R). Then we have a display M = (P,Q,F , Ḟ), which satisfies the required
properties.

For v ∈ J W, let ξ(v) be the Newton polygon introduced in §1.
Corollary 4.2. Let w and w′ be elements of J W. If w ⊂ w′, then we have ξ(w) ≺ ξ(w′).

Proof. Assume w ⊂ w′, i.e., there exists an F -zip Z over an irreducible scheme S such that
the type of the fiber of the generic point η is w′ and the type of the fiber of a special point s is
w. By the definition of ξ(w), there exists a display M over s such that the Newton polygon
of M is ξ(w). Applying Lemma 4.1 to Z and M , there exist an open affine subscheme
U = Spec(R) of S containing s and a display M over R such that M/IRM ≃ ZR and
Ms ≃ M . It follows from Grothendieck-Katz ([8], Th. 2.3.1 on p. 143) that ξ(w) is less
than or equal to the Newton polygon, say ζ, of Mη. By the definition of ξ(w′), we have
ζ ≺ ξ(w′).
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5 A reduction of the problem

Let w be any element of J W. The purpose of this paper is to prove Theorem 1.1:

ξ(w) = max
≺

{ζ | µ(ζ) ⊂ w}, (5)

where ζ is over Newton polygons
∑

(mi, ni) with
∑
mi = d and

∑
ni = c (see §1 for the

definitions of ξ(w) and µ(ζ)).

Remark 5.1. This gives, thanks to Theorem 3.6, a purely combinatorial algorithm deter-
mining ξ(w) for a given w. See [5], Corollary 4.8 for a way to compute µ(ζ).

We first prove that Theorem 1.1 follows from the next proposition. The subsequent
sections are devoted to the proof of this proposition.

Proposition 5.2. Assume that w is not minimal. Then there exist a scheme S of finite type
over k with dimS ≥ 1, a p-divisible group X over S and a non-constant family of isogenies

H(ξ(w))S −−−−→ X (6)

over S such that the isomorphism type of Xs[p] is w for every geometric point s of S.

Proof of (Proposition 5.2 ⇒ Theorem 1.1). We first claim that Theorem 1.1 is equivalent
to

µ(ξ(w)) ⊂ w. (7)

Clearly Theorem 1.1 implies (7). Suppose (7). Put Ξ = {ζ | µ(ζ) ⊂ w}. We want to show
that ξ(w) is the biggest element of Ξ. Clearly (7) says ξ(w) ∈ Ξ. Let ζ be any element of
Ξ. Then we have ξ(µ(ζ)) ≺ ξ(w) by Corollary 4.2. Note that we have ξ(µ(ζ)) = ζ by [15],
(1.2) Theorem. Thus we have ζ ≺ ξ(w).

Let us prove (7) under the assumption that Proposition 5.2 holds. We first consider the
case that w is minimal, say w = µ(ζ) the type of H(ζ)[p]. Then we have ξ(w) = ζ by [15]
(1.2), and therefore we have µ(ξ(w)) = w; hence (7) holds in this case. Assume that w is
not minimal. Let M be the moduli space of quasi-isogenies H(ξ(w)) → Y of p-divisible
groups, see [18], Chapter 2. Let I be an irreducible component of Mred containing the
generic point of the family (6). Note that I is projective ([18], Proposition 2.32). Let Sw(I)
be the locally closed subvariety consisting of isogenies H(ξ(w)) → X where X[p] is of type
w. It is known that Sw(I) is quasi-affine (cf. [19], 1.2 (g)). By the assumption, we have
dimSw(I) ≥ 1. Hence there exists w′ ∈ J W such that w′ ⊊ w and ξ(w′) = ξ(w). This
shows in particular that any final type v with ξ(v) = ξ(w) which is “minimal w.r.t. ⊂” is
minimal. We use induction on w with respect to ⊂. We assume µ(ξ(w′)) ⊂ w′. Then we
have µ(ξ(w)) = µ(ξ(w′)) ⊂ w′ ⊂ w.

6 Extensions by a minimal p-divisible group

Let ξ be a Newton polygon. Let ϱ = (m1, n1) be a segment of ξ, i.e., m1/(m1 + n1) is a
slope of ξ and gcd(m1, n1) = 1. Let ξ′ be the Newton polygon such that ξ = ξ′ + ϱ. Let
Z1 = Z(ϱ)S , where Z(ϱ) is the F -zip of H(ϱ)[p] over k. Let

0 −−−−→ Z ′ −−−−→ Z
f−−−−→ Z1 −−−−→ 0 (8)

be a short exact sequence of F -zips over a reduced k-scheme S. Write Z = (N,C,D,φ, φ̇)
and Z1 = (N1, C1, D1, φ1, φ̇1) and so on. That f is surjective means that f : N → N1 and
f : C → C1 are surjective, and also the injectivity is the dual notion of this surjectivity. Let
M ′ = (P ′, Q′, F ′, Ḟ ′) be any display lifting Z ′ with an isogeny ρ′ : M(ξ′)S → M ′, where
M(ξ′) is the display of H(ξ′). Let P ′ = L′ ⊕ T ′ be a normal decomposition.
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Proposition 6.1. For any closed point s ∈ S, there exist an open affine subscheme U
of S with s ∈ U and a finite surjective morphism Spec(R) → U such that there exist
a display M over R with an isogeny ρ : M(ξ)R → M and a surjective homomorphism
ϕ : M → (M1)R := M(ϱ)R with kernel M ′

R and an isomorphism θ : M/IRM → ZR such
that we have the commutative diagrams

0 −−−−→ M(ξ′)R −−−−→ M(ξ)R
pr−−−−→ M(ϱ)R −−−−→ 0

ρ′
y ρ

y ∥∥∥
0 −−−−→ M ′

R −−−−→ M ϕ−−−−→ (M1)R −−−−→ 0

(9)

and

0 −−−−→ M ′
R/IRM

′
R −−−−→ M/IRM

ϕ−−−−→ (M1)R/IR(M1)R −−−−→ 0∥∥∥ θ

y≃
∥∥∥

0 −−−−→ Z ′
R −−−−→ ZR

fR−−−−→ (Z1)R −−−−→ 0.

(10)

Proof. Let u = min{m1, n1}. Recall [4], Lemma 3.3 that the Dieudonné module M(ϱ) is
generated over the Dieudonné ring by Xi (i ∈ Z/uZ) and all relations are generated by
FαiXi − V βi+1Xi+1 = 0 for some non-negative integers αi, βi. Put xi := V βiXi. Set
β = max{βi}.

Let s be any closed point of S. Let U = Spec(R) be an affine open subscheme of S
containing s. We may replace S by U . We choose a lift Y i ∈ N of Xi ∈ N1 for each
i ∈ Z/uZ. Let ψ be the composition of N → N/D and (φ̇♯)−1 : N/D → C(p). After

replacing R with R′ such that (R′)p
β

= R, we can find yi,j ∈ C lifting V jXi for 0 ≤ j ≤ βi

such that the composition ψ(pj−1) ◦ · · · ◦ ψ(p) ◦ ψ sends Y i to 1 ⊗ yi,j ∈ R ⊗Fj
,R C. We

put yi := yi,βi
. After replacing R by an open affine subscheme over which N is free, we

can find a section of N → N/D, defining a lift φ̃ : C → N of φ̇ : C → N/D, such that
φ̃βi−j(yi) = yi,j . It follows from the exact sequence (8) that N is generated by elements of

N ′ and φ̃syi (0 ≤ s < βi) and φ
rφ̃βiyi (0 ≤ r < αi) with relations

φαi φ̃βiyi − yi+1 = vi (11)

for some vi ∈ N ′, where C is generated over W (R) by elements of C ′ and φ̃syi (0 ≤ s < βi),
and D is generated over W (R) by elements of D′ and φrφ̃βiyi (1 ≤ r ≤ αi).

Put WQ(R) = Q ⊗W (R). Write ξ′ =
∑t

l=2(ml, nl). Then the isogeny ρ′ induces an
isomorphism

WQ(R)⊗M ′ ∼−−−−→
t⊕

l=2

WQ(R)⊗M((ml, nl)). (12)

Let el ∈ WQ(R) ⊗M ′ be the highest element of M((ml, nl)), see [4], Section 3.1. Recall
that the ring of endomorphisms of Hml,nl

is described as El :=W (Fpml+nl )[θl]/(θ
ml+nl

l − p)
for a uniformizer θl of End(Hml,nl

). Let El(R) be the W (R)-module W (R) ⊗ El and set
El,Q(R) := Q⊗El(R). We extend the action of the Frobenius σ onW (R) to that on El,Q(R)
by the rule θσl = θl. Note the WQ(R)-homomorphism

El,Q(R) −−−−→ WQ(R)⊗M((ml, nl)) (13)

defined by sending f(θl) to f(θl)el is an isomorphism.
We have to define M = (P,Q,F , Ḟ). Note that P should have a normal decomposition

L ⊕ T . We will define L to be the W (R)-submodule of WQ(R) ⊗ (P1 ⊕ P ′) generated by
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elements of L′
R and F rḞ βiyi (0 ≤ r < αi) and T will be defined to be the W (R)-submodule

of (P1 ⊕P ′)⊗WQ(R) generated by elements of T ′
R and Ḟ syi (0 ≤ s < βi) for i = 1, 2, · · · , n

where yi ∈ (P1 ⊕ P ′)⊗WQ(R) is of the form:

yi = xi +
t∑

l=2

ailel (14)

for some ail ∈ El,Q(R), which will be chosen later so that M has the required properties.

Here M is defined by P = L ⊕ T and Q = L ⊕ IRT with F and Ḟ naturally extending
F and Ḟ on M(ξ)R. Since M ′

R contains M(ξ′)R, it suffices to find ail ∈ El,Q(R) modulo
IR,µEl(R) for a sufficiently large natural number µ (≥ max{miβi; i ∈ Z/uZ}).

Let vi ∈ P ′ be a lift of vi. We define bil ∈ El,Q(R) by
∑t

l=2 bilel = vi. It suffices to show
that there exists a solution {ail} (i ∈ Z/uZ, 2 ≤ l ≤ t) satisfying

Fαi Ḟ βiyi − yi+1 ≡
t∑

l=2

bilel (mod IR,µM(ξ′)R). (15)

Comparing the coefficients of el of the both sides of (15), we obtain

aσ
αi+βi

i,l θnlαi−mlβi

l − ai+1,l ≡ bil (mod IR,µEl(R)). (16)

for i ∈ Z/uZ. Since l is the same in each equation, it suffices to solve the simultaneous
equations for each l. Writing ai, bi, n, m and θ for ail, bil, nl, ml and θl respectively, we
have

aσ
∑u

i=1(αi+βi)

1 θ
∑u

i=1(nαi−mβi) − a1 ≡ r (mod IR,µEl(R)) (17)

for some r ∈ El,Q(R). It suffices to show that this has a solution a1 ∈ El,Q(R) for a finite
cover Spec(R) of S; then we get a required solution {ai}ui=1 from (16).

Write z := a1 and ϱ := σ
∑u

i=1(αi+βi). Note ϱ ̸= 1 by αi, βi > 0. We also put ϵ :=∑u
i=1(nαi − mβi). Then (17) is written as zϱθϵ − z ≡ r (mod IR,µEl(R)). If ϵ > 0,

we have a solution z =
∑∞

ℓ=0(−r)ϱ
ℓ

θℓϵ. Also if ϵ < 0, let c be a sufficient large integer
such that θ−cϵ ∈ IR,µEl(R), and we replace R by R′ so that (R′)p

c

= R; then we have a

solution z =
∑c−1

ℓ=1 r
ϱ−ℓ

θ−ℓϵ. Finally we consider the case ϵ = 0. Write z =
∑m+n−1

i=0 ziθ
i and

r =
∑m+n−1

i=0 riθ
i with zi, ri ∈WQ(R). It suffices to solve zϱi −zi ≡ ri (mod IR,µ) for each 0 ≤

i < m+n. Let νi be the biggest non-negative integer ν such that ri ∈ pνW (R). We replace
R with R′ so that we have (R′)p

ν

= R. Then there exist elements tj of R for all integers

j ≥ νi such that zi =
∑∞

j=νi

V j

[tj ] is a solution. Indeed, putting zij :=
∑

j′<j
V j′

[tj′ ], we

can find tj′ successively so that zϱij − zij ≡ ri (mod IR,j). Let j ≥ νi and suppose that we
have already got such tj′ for j

′ < j. Since ϱ ̸= 1, after replacing R by a finite cover R′, there

exists a solution tj ∈ R of the Artin-Schreier equation tϱj − tj = (V
−j

(ri−zϱij +zij) mod IR).

Then clearly zi :=
∑µ−1

j=νi

V j

[tj ] is a solution of zϱi − zi ≡ ri (mod IR,µ).

7 Proof of Proposition 5.2

Let w ∈ J W. Let (m1, n1) be the first segment of ξ(w). By the definition of ξ(w), there
exists a p-divisible group X over an algebraically closed field k of characteristic p such that
X[p] is of type w and the Newton polygon of X is ξ(w). Write M = D(X). Choose an
embedding ı :M →M(ξ(w)) and let ȷ :M(ξ(w)) →Mm1,n1 be the natural projection. Put
M1 = ȷ ◦ ı(M). Let f0 : X → X1 be the homomorphism of p-divisible groups corresponding
to M → M1. Let X ′

0 be the kernel of f0. Note X ′
0 is a p-divisible group. Thus we have an

exact sequence of p-divisible groups

0 −−−−→ X ′
0 −−−−→ X

f0−−−−→ X1 −−−−→ 0. (18)
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Lemma 7.1. X1 is minimal, i.e., X1 ≃ Hm1,n1
.

Proof. Recall [4], Corollary 5.4, whose dual is as follows. Let λv be the optimal lower bound
of the first Newton slopes of p-divisible groups with p-kernel type v for each v ∈ J W; then
we have

λv = min{m/(m+ n) | Gv,Ω
∃↠ Hm,n[p]Ω for some alg. closed field Ω}. (19)

Note that λv is equal to the first slope of ξ(v).
Let w and w1 be the final types of X[p] and X1[p] respectively. Since X[p] ↠ X1[p], i.e.,

Gw,k ↠ Gw1,k, we have λw ≤ λw1 by (19). By the construction of X1, the (first) Newton
slope of X1 is λw; hence we have λw ≥ λw1 . Thus λw = λw1 . Then (19) implies that
there exists a surjective homomorphism Hm1,n1 [p]Ω ↠ Gw1,Ω for some Ω = Ω. This is an
isomorphism, since Hm1,n1 [p] and Gw1 have the same rank (= m1 + n1).

We use induction on the rank of w to prove Proposition 5.2. Assume that w is not
minimal. It suffices to show the case that

(*) Gw has no direct factor which is isomorphic to Hm1,n1 [p].

Indeed if Gw = Gv ⊕ Hm1,n1 [p], then v is not minimal and our problem can be reduced
to the case v. Hence we assume (*) from now on. Let Z and Z1 be F -zips of X[p] and
X1[p] respectively. Let B and B1 be the final types of Z and Z1 respectively. Now (*)
implies that Ω∞(B,B1) = ∅. Consider the space Σ := Hom(Z,Z1), which is isomorphic to∏

ω∈Ωo(B,B1)
Kω; hence Σ is irreducible. Let f be the universal homomorphism ZΣ → (Z1)Σ.

Lemma 7.2. Let T → Σ be any dominant morphism of k-schemes. Then fT is not “constant
up to Aut(ZT )”. Here we say that fT is constant up to Aut(ZT ) if there exists a section
x = Spec(k) → T such that fT = (fx)T ◦ κ for an automorphism κ of ZT .

Proof. Let x = Spec(k) → T be any section and κ any automorphism of ZT . Let i be the
largest integer such that Fili Hom(Z,Z1) = Hom(Z,Z1). Since Ω(B,B1) consists of finite
slices, we have dimFili+1 Hom(Z,Z1) < dimHom(Z,Z1). We write κ = κo + κ∞ with
κo ∈ End(Z)o(T ) and κ∞ ∈ End(Z)∞(T ). It follows from Corollary 3.4 that (fx)T ◦ κ is in
Fili+1 Hom(Z,Z1)(T )+(fx)T ◦κ∞. Since End(Z)∞ is discrete, κ∞ factors through Spec(k).
Hence the dimension of the scheme-theoretic image of (fx)T ◦κ : T → Hom(Z,Z1) is less than
or equal to dimFili+1 Hom(Z,Z1). On the other hand, the morphism fT : T → Hom(Z,Z1)
is dominant. Hence we have fT ̸= (fx)T ◦ κ.

Let η denote the generic point of Σ and let w′ be the type of the kernel of fη. Let U
be the open subvariety of Σ consisting of u ∈ U such that fu is surjective and the kernel of
fu is of type w′. Choose a finite surjective morphism S → U which trivializes Z ′ := ker ρU ,
i.e., Z ′

S ≃ (Zw′)S .

0 −−−−→ (Zw′)S −−−−→ ZS
fS−−−−→ (Z1)S −−−−→ 0. (20)

By Corollary 2.2, there exists a displayM ′ over k such thatM ′/IM ′ ≃ Zw′ and the Newton
polygon of M ′ is ξ(w′). Choose an isogeny M(ξ(w′)) →M ′. Put

ζ := ξ(w′) + (m1, n1). (21)

Applying the result of §6 to (20), for a finite surjective morphism Spec(R) → S, we obtain
an isogeny

ρ : M(ζ)R −−−−→ M (22)

with ϕ : M → (M1)R and θ : M/IRM ≃ ZR satisfying the commutative diagrams (9) and
(10).
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Lemma 7.3. We have ζ = ξ(w).

Proof. Since M has Newton polygon ζ and p-kernel type w, we have ζ ≺ ξ(w) by the
definition of ξ(w). Let w′

0 be the type of X ′
0[p]. Since w′

0 ⊂ w′, we have ξ(w′
0) ≺ ξ(w′) by

Corollary 4.2. Note the Newton polygon ξ(w) of X is equal to ξ(w′
0)+ (m1, n1). This is less

than or equal to ξ(w′) + (m1, n1) = ζ.

It remains to show

Lemma 7.4. ρ is not constant.

Proof. Applying Lemma 7.2 to T := Spec(R) → Σ, we have that fR is not constant up to
Aut(ZR). It follows from the diagram (10) that ϕ is non-constant; hence so is ϕ. Then we
have the lemma by the diagram (9).
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