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Abstract

We study truncated Barsotti-Tate groups of level one (BT1) and their extensions to p-
divisible groups. Firstly we show that any BT1 contains a certain minimal BT1 as a non-zero
subgroup scheme. This proves that any BT1 is written as a successive extension of minimal
BT1’s. Secondly we prove that any successive extension of minimal BT1’s which is a BT1

can be extended to a certain successive extension of minimal p-divisible groups. As an
application, we determine the optimal upper bound of the last Newton slopes of p-divisible
groups with given isomorphism type of p-kernel.

1 Introduction

We fix throughout a prime number p. Let k be an algebraically closed field of characteristic p.
In this paper, we present a new method to extend truncated Barsotti-Tate groups of level one
(BT1) over k to p-divisible groups over k. A good point of this method is that we can extend a
BT1 to p-divisible groups with various determinable isogeny types (Newton polygon).

Kraft and Oort classified the isomorphism classes of BT1’s over k by final sequences (cf. §2.3).
For non-negative integers c, d with gcd(c, d) = 1, let Hc,d denote the simple minimal p-divisible
group of slope c/(c + d) (cf. §3.1). In §4.1 we associate to any final sequence ν non-negative
integers mν , nν and a natural number eν in a combinatorial way. The first aim of this paper is
to prove

Theorem 1.1. Let G be a BT1 over k with final sequence ν. Then there exists an injective
homomorphism over k

H⊕e
m,n[p] −−−−→ G

with m = mν , n = nν and e = eν .

This shows that any BT1 can be written as a successive extension of minimal BT1’s (Defi-
nition 3.2), see Lemma 2.2. The second aim is to prove

Theorem 1.2. Let G be a BT1. If G is a successive extension of {Hmi,ni [p]}t
i=1, then G can be

extended to a certain successive extension of minimal p-divisible groups {Hmi,ni}t
i=1.

Hence for any pair of final sequence ν and Newton polygon ξ =
∑t

i=1(mi, ni) such that a
BT1 having final sequence ν is written as a successive extension of {Hmi,ni [p]}t

i=1, there exists
a p-divisible group with final sequence ν and Newton polygon ξ. Note that for given ν such ξ is
not unique in general.

As an application, we shall show

Corollary 1.3. The optimal upper bound of the last Newton slopes of p-divisible groups with
given final sequence ν is equal to ρν = mν/(mν + nν) (see Definition 4.1).
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This is an unpolarized analogue of [3], Theorem 4.1. An obstruction in the unpolarized case
is the absence of a good moduli space like the moduli space of principally polarized abelian
varieties. As an alternative method, we use the theorems above. Let us explain the background
of Corollary 1.3. A final goal of our research is to solve the following classical problem:

(P) Let ν be a final sequence. Classify the possible isogeny classes (Newton polygons) of p-
divisible groups over k with final sequence ν.

Since it seems difficult to give a complete answer to (P), one may propose a weaker problem:

(P′) Show the existence of the optimal upper bound (w.r.t. ≺) of the Newton polygons of p-
divisible groups over k with final sequence ν, and find an algorithm determining it.

Note (P′) is also open in general. However I believe that (P′) would be beautifully solved by
induction, and expect that Corollary 1.3 would be the first step of the induction.

In the last subsection, combining Theorems 1.1, 1.2 and Corollary 1.3, we shall show

Corollary 1.4. A BT1 is BT1-simple if and only if it is minimal and indecomposable.

This has already been obtained by Oort ([10], Theorem A).
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Notations

For non-negative integers m,n we denote by gcd(m,n) the greatest common divisor, where for
convenience we set gcd(m, 0) = gcd(0, m) = m for m ∈ Z≥0. For an integral domain R, we
denote by frac(R) its field of fractions. For a set S, we denote by |S| the cardinality of S.

2 Preliminaries

2.1 The Dieudonné theory

Let K be a perfect field of characteristic p and W (K) the ring of infinite Witt vectors with
coordinates in K. Let AK be the p-adic completion of the associative ring

W (K)[F ,V]/(Fx − xσF ,Vxσ − xV,FV − p,VF − p, ∀x ∈ W (K)) (2.1.1)

with the Frobenius automorphism σ of W (K). A Dieudonné module over W (K) is a left AK-
module which is finitely generated as a W (K)-module. A Dieudonné module is called free if it
is free as W (K)-module.

The covariant Dieudonné theory says that there is a canonical categorical equivalence D from
the category of p-torsion finite commutative group schemes (resp. p-divisible groups) over K to
the category of Dieudonné modules over W (K) which are of finite length (resp. free). We write
F and V for “Frobenius” and “Verschiebung” on commutative group schemes. The covariant
Dieudonné functor D satisfies D(F ) = V and D(V ) = F .
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2.2 The Dieudonné-Manin classification

A segment is a pair (m,n) of non-negative integers with gcd(m,n) = 1. The slope λ(s) of a
segment s = (m,n) is defined to be m/(m + n).

For a sequence (s1, . . . , st) of segments si = (mi, ni), putting Pj := (
∑j

i=1(mi+ni),
∑j

i=1 mi) ∈
R2 for 0 ≤ j ≤ t, let L = L(s1, . . . , st) denote the line graph in R2 passing through P0, . . . , Pt

in this order. Put h :=
∑t

i=1(mi + ni). For a point Q ∈ [0, h] × R, we say Q ≺ L if Q is on or
above L. We say, for two line graphs L, L′ as above with the same end point, that L′ ≺ L if
Q ≺ L for all Q ∈ L′.

A Newton polygon is a line graph of the form L(s1, . . . , st) with λ(s1) ≤ · · · ≤ λ(st). Since
this Newton polygon is the biggest one with respect to ≺ among line graphs obtained from the
set {s1, . . . , st}, we usually write this Newton polygon as s1 + · · · + st.

For a segment (m,n), we define a p-divisible group Gm,n over Fp by

D(Gm,n) = AFp/AFp(Fm − Vn). (2.2.1)

By the Dieudonné-Manin classification [6], for any p-divisible group G over a field K of charac-
teristic p, there is an isogeny over an algebraically closed field containing K from G to

t⊕
i=1

Gmi,ni (2.2.2)

for some finite set of segments si = (mi, ni). Thus we get a Newton polygon s1 + · · ·+ st, which
is denoted by NP(G). One may suppose λ(s1) ≤ · · · ≤ λ(st). We call λi(G) := λ(si) the i-th
Newton slope of G. We set

ρi(G) = λt+1−i(G) (2.2.3)

and call ρ1(G) the last Newton slope (or the highest Newton slope). Note the height of G is equal
to h =

∑t
i=1(mi + ni) and dimK Lie(G) =

∑t
i=1 mi. We remark that h and

∑t
i=1 mi depend

only on the p-kernel G[p].

2.3 The Kraft-Oort classification

We review the classification of BT1’s by Kraft, which was reobtained by Oort. The main
references are [5] and [8]. Let K be a field of characteristic p. All group schemes will be over K
and all homomorphisms of them will be over K.

Definition 2.1. (1) A finite commutative group scheme G is said to be a BT1 if

Im(V : G(p) → G) = Ker(F : G → G(p)),
Im(F : G → G(p)) = Ker(V : G(p) → G).

(2) Assume K is perfect. The Dieudonné module of a BT1 is called a truncated Dieudonné
module of level one (DM1).

We shall use the following basic lemma.

Lemma 2.2. (1) Let f : G1 → G2 be a surjective homomorphism of BT1’s. Then Ker f is
also a BT1.
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(2) Let f : G1 → G2 be an injective homomorphism of BT1’s. Then Coker f is also a BT1.

Proof. (1) Set G3 = Ker f . For 1 ≤ i ≤ 3, by p · Gi = 0, we have the complexes

C•
i : F−−−−→ G

(p)
i

V−−−−→ Gi
F−−−−→ G

(p)
i

V−−−−→ Gi
F−−−−→ .

For i = 1, 2 we have Hj(C•
i ) = 0 for any j ∈ Z by the definition of BT1’s. The long exact

sequence deduced from the exact sequence

0 −−−−→ C•
3 −−−−→ C•

1 −−−−→ C•
2 −−−−→ 0

shows Hj(C•
3) = 0 for any j ∈ Z. This means that G3 is a BT1. Similarly we obtain (2).

From this lemma, any direct factor of a BT1 in the category of finite commutative group
schemes is a BT1.

We review the classification of BT1’s in terms of final sequences.

Definition 2.3. A final sequence of length h is a map ν : {0, 1, . . . , h} → {0, 1, . . . , h} satisfying
ν(0) = 0 and ν(i − 1) ≤ ν(i) ≤ ν(i − 1) + 1.

Let G be a BT1 over K of rank ph. For any subgroup scheme G′ of G over K and for any word
w of V, F−1, we define w · G′ inductively by V · G′ := V G′(p) and F−1 · G′ := F−1(G′(p) ∩ FG).
Then there exists a unique final sequence ν of length h such that for any word w of V, F−1 we
have ν(length(w · G)) = length(V w · G). Thus we have a canonical map

FS : {BT1 of length d over K}/K-isom. −→ {final sequence of length d}. (2.3.1)

The Kraft-Oort classification is described as:

Theorem 2.4 ([5]). If K is algebraically closed, then FS is bijective.

Assume K is algebraically closed. We shall use k instead of K.

Definition 2.5. Let G be a BT1 and ν its final sequence.

(1) We call G (or ν) BT1-simple if there is no non-zero proper BT1 subgroup scheme of G.

(2) We call G (or ν) indecomposable if there is no non-zero proper direct factor of G.

Definition 2.6. (1) A final type of length h is a pair (B, δ) consisting of a totally ordered
finite set B with |B| = h and a map δ : B → {0, 1}.

(2) Let B = (B, δ) and B′ = (B′, δ′) be two final types. We say B and B′ are isomorphic if
there exists an ordered bijection f from B to B′ such that δ = δ′ ◦ f .

For a final type (B, δ), we define an automorphism π = πδ of B as follows. Let B = {b1 <
· · · < bh} and set B− = {b ∈ B | δ(b) = 0} and B+ = {b ∈ B | δ(b) = 1}. Put h0 = |B−|. Let
π− and π+ be the ordered maps

π− : B− −−−−→ {b1, . . . , bh0},

π+ : B+ −−−−→ {bh0+1, . . . , bh}.
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Then π is defined by

π(b) =

{
π−(b) if b ∈ B−,

π+(b) if b ∈ B+.
(2.3.2)

We call πδ the automorphism of B associated with δ. We define an automorphism $ = $δ of
{1, . . . , h} by π(bi) = b$(i) for all 1 ≤ i ≤ h.

Obviously we have

Lemma 2.7. The map from the set of final sequences of length h to the set of equivalence classes
of final types of length h sending ν to the class of (B, δ) defined by B = {b1 < · · · < bh} and
δ(bi) = 1 − ν(i) + ν(i − 1) for all 1 ≤ i ≤ h is bijective.

Let G′ and G′′ be BT1’s. Let ν ′ and ν ′′ be their final sequences and let B′ and B′′ be their
final types. We shall write the final sequence of G′ ⊕G′′ as ν ′ ⊕ ν ′′ and its final type as B′ ⊕B′′.
Also we write a homomorphism f : G′ → G′′ as f : ν ′ → ν ′′, etc.

We review the inverse map of FS. Let ν be a final sequence and B = (B, δ) be its final type
with B = {b1 < · · · < bh}. We can construct a BT1, say G, having final sequence ν as follows.
The Dieudonné module of G is defined to be

D(G) =
h⊕

i=1

kZi (2.3.3)

with F and V operations

FZi =

{
Z$(i) if δ(bi) = 0,

0 if δ(bi) = 1
and VZ$(i) =

{
Zi if δ(bi) = 1,

0 if δ(bi) = 0.

By this construction, from any π-stable subset B′ of B we obtain a direct factor G′ of G,
which is defined by D(G′) =

⊕
bi∈B′ kZi.

3 Minimal p-divisible groups

In this subsection we review the definition of minimal p-divisible groups (cf. [2], §5.3 and [9])
and show some basic facts.

3.1 Definitions

Definition 3.1. For non-negative integers m, n with m + n > 0, we define a p-divisible group
Hm,n over Fp by

D(Hm,n) =
m+n−1⊕

i=0

Zpxi

with F ,V operations:

Fxi = xi+n and Vxi = xi+m for all i ∈ Z≥0 (3.1.1)

where xi (i ∈ Z≥m+n) are defined as satisfying xi+m+n = pxi for i ∈ Z≥0.
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Note D(Hm,n) has an endomorphism ϑ defined by ϑ(xi) = xi+1. For an arbitrary perfect
field K, the Dieudonné module D(Hm,n ⊗ K) has a W (K)-basis {x0, . . . , xm+n−1} satisfying
the equations (3.1.1), which is called a minimal basis of D(Hm,n ⊗ K). We call x0 the highest
element of the minimal basis. We have H⊕e

m,n ' Hem,en for any e ∈ Z≥1.
For a Newton polygon ξ =

∑t
i=1(mi, ni), we denote by H(ξ) the p-divisible group

t⊕
i=1

Hmi,ni . (3.1.2)

Note the Newton polygon of H(ξ) is equal to ξ.

Definition 3.2. Let G be a p-divisible group and let G be a BT1. We call G (resp. G) minimal
if there exist a Newton polygon ξ and an isomorphism from G (resp. G) to H(ξ) (resp. H(ξ)[p])
over an algebraically closed field.

3.2 A description of D(Hm,n)

In this subsection we assume m,n > 0 and gcd(m, n) = 1, and put M = D(Hm,n). Set

u = min{m,n} and v = max{m,n}. (3.2.1)

Let {x0, . . . , xm+n−1} be a minimal basis of M . For any xi with i < u, let α(xi) denote the least
integer α such that Fα+1(xi) ∈ pM . Note α(xi) ≥ 1 for all i < u. For any xi with i ≥ v, let
β(xi) denote the largest integer β such that xi ∈ VβM . Note β(xi) ≥ 1 for all i ≥ v.

Set X0 = x0. We define inductively αi, βi+1 ∈ Z≥1 and Xi+1 ∈ {x0, . . . , xu} for i ∈ Z≥0 by
αi = α(Xi) and βi+1 = β(Fαi(Xi)), and Vβi+1Xi+1 = FαiXi. Note Xi+u = Xi for any i ≥ 0.
Thus we get αi, βi and Xi for i ∈ Z/uZ. Obviously we have

Lemma 3.3. Suppose m,n > 0 and gcd(m,n) = 1. Then putting

Ii = FαiXi − Vβi+1Xi+1,

we have
D(Hm,n ⊗ K) = AK〈X1, . . . , Xu〉/AK〈I1, . . . , Iu〉,

for any perfect field K of characteristic p.

3.3 The final type of Hm,n[p]

We recall a part of [4], §4.5. Let m,n be non-negative integers with m + n > 0. Let νm,n be the
final sequence of Hm,n[p]. Then we have νm,n = (0, . . . , 0, 1, . . . ,m) with n zeros ([4], Lemma
4.13), and the final type Bm,n = (Bm,n, δm,n) of νm,n is given by Bm,n = {b1 < · · · < bm+n} and
by δm,n(bi) = 1 for 1 ≤ i ≤ n and δm,n(bi) = 0 for n < i ≤ m+n. Let πm,n be the automorphism
of Bm,n associated with δm,n. Then we have the commutative diagram

Bm,n −−−−→ Z/(m + n)Z

πm,n

y y−n

Bm,n −−−−→ Z/(m + n)Z,

(3.3.1)

where the horizontal maps send bi to the class of i − 1. Note Hm,n[p] is indecomposable if and
only if gcd(m,n) = 1 (cf. [4], Definition 4.3 and Corollary 4.15).
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4 Construction of embeddings of certain minimal BT1’s

The aim of this section is to prove Theorem 1.1. Before that, we define mν , nν , eν and so on,
and investigate some basic properties of them.

4.1 Ψ-cycles

Let ν be a final sequence, and let B = (B, δ) be its final type with B = {b1 < · · · < bh}. We
define a map

Ψ̃ : B −−−−→ B

by sending bi to {
bν(i) if ν(i) 6= 0,

bν(h)+i if ν(i) = 0.
(4.1.1)

We get a non-empty ordered subset of B:

D = Dν :=
∞∩

j=1

Im Ψ̃j , (4.1.2)

where Ψ̃j denotes the composition of j copies of Ψ̃. Then Ψ̃ induces an automorphism

Ψ : D −−−−→ D. (4.1.3)

Set
C = Cν := D ∩ {bν(h)+1, bν(h)+2, . . . , bh}. (4.1.4)

Since for any i ≤ i′ we have

ν(i) ≤ ν(i′) and ν(h) + i − ν(i) ≤ ν(h) + i′ − ν(i′), (4.1.5)

we have the commutative diagram

D −−−−→ Z/|D|Z

Ψ

y y−|C|

D −−−−→ Z/|D|Z,

(4.1.6)

where the horizontal maps are defined by the unique ordered map from D to {0, · · · , |D| − 1}.
We put eν := gcd(|C|, |D|) and define mν , nν ∈ Z by |C| = eνnν and |D| = eν(mν + nν).

Definition 4.1. (1) The slope associated with ν is the rational number

ρν = mν/(mν + nν).

(2) We call the natural number eν the Ψ-multiplicity in ν.

Proposition 4.2. Let G be a p-divisible group with FS(G[p]) = ν. Then the last Newton slope
ρ1(G) of G is less than or equal to ρν .
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Proof. Let s be the slope function of G (cf. [1], IV. 5). Recall that s is the continuous real-
valued function on R defined so that for each λ ∈ R, the straight line with slope λ tangent
to the Newton polygon of G passes through the point (h, s(λ)). Hence in order to prove the
proposition, it suffices to show s(ρν) = dimLie(G).

Set m = mν and n = nν . By the same argument as in [3], Proposition 6.1, we have

V 1+α(m+n) · G ⊂ pαnG

for any α ∈ Z≥0. Hence for any ε ∈ Q>0 and for any β ∈ N with βε ∈ Z≥1, we obtain
Fβ(m+n+ε)M ⊂ pβnM , which can be paraphrased as

pβ(m+ε)M ⊂ Vβ(m+n+ε)M. (4.1.7)

By [1], Corollary on p. 88, the slope function s has the property:

s

(
m + ε

m + n + ε

)
= lim

β→∞

length(M/(Vβ(m+n+ε)M + pβ(m+ε)M))
β(m + n + ε)

.

From (4.1.7), this is equal to

lim
β→∞

length(M/(Vβ(m+n+ε)M))
β(m + n + ε)

= dimLie(G).

The continuity of s implies s(ρν) = dimLie(G).

Remark 4.3. Apology: in the proof of [3], Proposition 6.3, the author confused the con-
travariant theory [1] and the covariant theory. But anyway [3], Proposition 6.3 is true for any
quasi-polarized p-divisible group.

4.2 Interrelations between π-cycles and Ψ-cycles

Let ν,B,D and Ψ be as in the previous subsection. Write B = (B, δ) and B = {b1 < · · · < bh}.

Definition 4.4. We define a final type (D, γ) by

γ(b) =

{
1 if ν(i) = 0,

0 otherwise

for b = bi ∈ D.

Set m = mν , n = nν and e = eν . Write D = {c1, . . . , ce(m+n)}. Clearly we have

γ(ci) =

{
1 if 1 ≤ i ≤ en,

0 otherwise,

and the automorphism πγ of D associated with γ is equal to Ψ. Hence there is an isomorphism
of final types

κ : B⊕e
m,n

∼−−−−→ (D, γ). (4.2.1)

Let us investigate the interrelation between π on B and Ψ on D.
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Lemma 4.5. Let b be an element of D.

(1) We have δ(b) ≥ γ(b) and π(b) ≥ Ψ(b).

(2) δ(b) = γ(b) if and only if π(b) = Ψ(b).

Proof. Write b = bi. First note

γ(b) = 1 ⇐⇒ ν(i) = 0 =⇒ ν(i − 1) = ν(i) ⇐⇒ δ(b) = 1. (4.2.2)

(1) If δ(b) < γ(b) held, then δ(b) = 0 and γ(b) = 1, which contradicts with (4.2.2). Thus we
have δ(b) ≥ γ(b).

Let us show π(b) ≥ Ψ(b). Case γ(b) = 1: By δ(b) ≥ γ(b) we have δ(b) = 1. By γ(b) = 1 we
have Ψ(b) = bν(h)+i−ν(i). By δ(b) = 1 we have π(b) = bν(h)+i−ν(i). Hence we have π(b) = Ψ(b).
Case γ(b) = 0: We have Ψ(b) = bν(i). Note π(b) = bν(i) or bν(h)+i−ν(i). Since ν(i) ≤ i ≤
ν(h) + i − ν(i), we have π(b) ≥ Ψ(b).

(2) Assume δ(b) = γ(b). In the case of δ(b) = γ(b) = 1, we have seen π(b) = Ψ(b) in the
proof of (1). If δ(b) = γ(b) = 0, then ν(i − 1) < ν(i) 6= 0; hence we have π(b) = bν(i) = Ψ(b).

Conversely we assume π(b) = Ψ(b). If δ(b) > γ(b) held, then we have δ(b) = 1 and γ(b) = 0.
By δ(b) = 1, we have b ≤ π(b). From δ(b) = 1, we have ν(i − 1) = ν(i); hence ν(i) < i. From
γ(b) = 0, we have ν(i) 6= 0; hence Ψ(b) = bν(i). Thus Ψ(b) = bν(i) < bi = b ≤ π(b). This is a
contradiction.

Lemma 4.6. Let b be an element of D, and let c be an element of B.

(1) If π(c) ≤ Ψ(b) and δ(c) = γ(b), then c ≤ b.

(2) If c ≤ b, then δ(π−1(c)) ≤ γ(Ψ−1(b)).

Proof. (1) Assume π(c) ≤ Ψ(b) and δ(c) = γ(b). Let b = bi and c = bj . Suppose c > b held.
Then we have j > i. If δ(c) = γ(b) = 0, then π(c) = bν(j) ≥ bν(i) = Ψ(b). By the assumption
π(c) ≤ Ψ(b), we have bν(j) = bν(i). This implies bν(j) = bν(j−1); hence we have δ(c) = 1; this
is a contradiction. If δ(c) = γ(b) = 1, then π(c) = bν(h)+j−ν(j) ≥ bν(h)+i−ν(i) = Ψ(b). By the
assumption π(c) ≤ Ψ(b), we have bν(h)+j−ν(j) = bν(h)+i−ν(i). This implies ν(h) + j − ν(j) =
ν(h) + (j − 1) − ν(j − 1), namely ν(j) = ν(j − 1) + 1; hence we have δ(c) = 0; this is a
contradiction. Thus c ≤ b has to hold.

(2) Assume c ≤ b. It suffices to show that γ(Ψ−1(b)) = 0 implies δ(π−1(c)) = 0. Suppose
γ(Ψ−1(b)) = 0. Write bi = Ψ−1(b). Then we have b = Ψ(bi) = bν(i) ≤ bν(h). By the assumption
c ≤ b, we have c ≤ bν(h). Note δ(π−1(c)) = 0 if and only if c ≤ bν(h).

We define two Q-valued functions on B by{
τ+(b) = τ+

ν (b) :=
∑∞

i=0 δ(πi(b))2−i,

τ−(b) = τ−
ν (b) :=

∑∞
i=1 δ(π−i(b))2−i

for b ∈ B (4.2.3)

and two Q-valued functions on D by{
χ+(b) = χ+

ν (b) :=
∑∞

i=0 γ(Ψi(b))2−i,

χ−(b) = χ−
ν (b) :=

∑∞
i=1 γ(Ψ−i(b))2−i

for b ∈ D. (4.2.4)

(Let µ be the final sequence of (D, γ). By definition we have χ±
ν (b) = τ±

µ (b) for all b ∈ D.)
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Proposition 4.7. Let b ∈ D.

(1) We have τ+(b) ≥ χ+(b) and τ−(b) ≤ χ−(b).

(2) The following three conditions are equivalent:

(i) τ+(b) = χ+(b);

(ii) τ−(b) = χ−(b);

(iii) we have πi(b) = Ψi(b) for all i ∈ Z and γ = δ on the subset {Ψi(b) | i ∈ Z} of D.

Proof. Firstly we prove τ+(b) ≥ χ+(b) and the equivalence (i) ⇔ (iii) of (2) at the same time.
Let l be any non-negative integer such that δ(πi(b)) = γ(Ψi(b)) for all 0 ≤ i < l. It suffices
to show (A1) πj(b) = Ψj(b) for all 0 ≤ j ≤ l and (A2) δ(πl(b)) ≥ γ(Ψl(b)). The proof of
(A1) is by induction on j. The case of j = 0 is obvious; if πj(b) = Ψj(b) (j < l) holds, then
the assumption δ(πj(b)) = γ(Ψj(b)) implies πj+1(b) = Ψj+1(b) by Lemma 4.5 (2); thus we have
(A1). Thus we have πl(b) = Ψl(b) in particular; then by Lemma 4.5 (1) we have (A2).

Secondly we prove τ−(b) ≤ χ−(b). Let l be any natural number such that δ(π−i(b)) =
γ(Ψ−i(b)) for all 1 ≤ i < l. We claim (B1) π−j(b) ≤ Ψ−j(b) for all 0 ≤ j < l and (B2)
δ(π−l(b)) ≤ γ(Ψ−l(b)). The proof of (B1) is by induction on j. The case of j = 0 is obvious;
if π−(j−1)(b) ≤ Ψ−(j−1)(b) (1 ≤ j < l) holds, then the assumption δ(π−j(b)) = γ(Ψ−j(b))
implies that π−j(b) ≤ Ψ−j(b) for 1 ≤ j < l by Lemma 4.6 (1); thus we have (B1). From
π−(l−1)(b) ≤ Ψ−(l−1)(b), we have (B2) δ(π−l(b)) ≤ γ(Ψ−l(b)) by Lemma 4.6 (2).

Since (iii) ⇒ (ii) is obvious, it suffices to show (ii) ⇒ (i). Obviously (ii) says that for all
i ∈ Z≥1 we have δ(π−i(b)) = γ(Ψ−i(b)). Since both of π and Ψ make cycles, there exists N ∈ Z≥1

such that πN (b) = b and ΨN (b) = b. For any j ∈ Z≥0, choosing c ∈ Z≥1 with j − cN < 0, we
have δ(πj−cN (b)) = γ(Ψj−cN (b)); hence δ(πj(b)) = γ(Ψj(b)). Thus we obtain (i).

Corollary 4.8. Let E be the set {b ∈ D | τ+(b) = χ+(b)}. Then E is π-stable and Ψ-stable
and we have γ = δ on E. (Hence E := (E, γ|E) can be seen as a direct factor of B and also as
a direct factor of (D, γ), see the last sentence of §2.3.)

Proof. Let b be any element of E. The equality γ(b) = δ(b) is obvious from the equivalence (i)
⇔ (iii) of Proposition 4.7 (2). This equivalence also implies π(b) ∈ E, since b satisfies (iii) if and
only if π(b) satisfies (iii). Thus we obtain π(E) = E. Similarly we have Ψ(E) = E.

4.3 Slices and strings

The main reference is [10], §2. Also see [7], §4. We recall the definition of slices and strings
(cf. [10], §2) in terms of final types.

Definition 4.9. Let B1 = (B1, δ1) and B2 = (B2, δ2) be final types and set π1 = πδ1 and
π2 = πδ2 .

(1) A finite slice ω is a subset of B1 × B2 of the form

ω = {(πi
1(s1), πi

2(s2)) | 1 ≤ i ≤ `} with |ω| = `

for s1 ∈ B1 and s2 ∈ B2 satisfying

(a) δ1(s1) = 1 and δ2(s2) = 0,
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(b) δ1(πi
1(s1)) = δ2(πi

2(s2)) for all 1 ≤ i < ` and

(c) δ1(π`
1(s1)) = 0 and δ2(π`

2(s2)) = 1.

We denote by Ωf = Ωf (B1,B2) the set of finite slices of B1 and B2.

(2) An infinite slice ω is a subset of B1 × B2 of the form

ω = {(πi
1(s1), πi

2(s2)) | 1 ≤ i ≤ `} with |ω| = `

for s1 ∈ B1 and s2 ∈ B2 satisfying

(a) s1 = π`
1(s1) and s2 = π`

2(s2),

(b) δ1(πi
1(s1)) = δ2(πi

2(s2)) for all 1 ≤ i < `.

We denote by Ω∞ = Ω∞(B1,B2) the set of infinite slices of B1 and B2.

Set Ω = Ω(B1,B2) := Ωf t Ω∞. An element of Ω is called a slice.

Let k be an algebraically closed field of characteristic p.

Definition 4.10. Let ω = {(πi
1(s1), πi

2(s2)) | 1 ≤ i ≤ `} be a slice with |ω| = `. For an
element r ∈ ω, we denote by η(r) (= ηω(r)) the integer η with 0 ≤ η < ` satisfying r =
(πη+1

1 (s1), π
η+1
2 (s2)).

(1) Let ω be a finite slice. A string of ω is the map

ψω,a : B1 × B2 −−−−→ k

sending r ∈ ω to apη(r)
and r 6∈ ω to 0 for an element a of k.

(2) Let ω be an infinite slice. A string of ω is the map

ψω,a : B1 × B2 −−−−→ Fp|ω|

sending r ∈ ω to apη(r)
and r 6∈ ω to 0 for an element a of Fp|ω| .

Let G1 and G2 be BT1’s over k having final types B1 and B2 respectively. There is a canonical
isomorphism as additive groups

Λ :
∏

ω∈Ωf

k ×
∏

ω′∈Ω∞

Fp|ω′|
∼−−−−→ Homk(G1, G2).

See [10], (2.4). Recall the definition of Λ. Let (ω, a) be a pair of slice ω and a ∈ k such that
a ∈ Fp|ω| if ω is infinite. To (ω, a) we associate an element fω,a of Hom(D(G1), D(G2)) as follows.

Write B∗ = {b(∗)
1 < · · · < b

(∗)
h∗

} for (∗ = 1, 2) and write D(G∗) =
⊕h∗

i=1 kZ
(∗)
i for (∗ = 1, 2) as in

(2.3.3). Then putting rij = (b(1)
i , b

(2)
j ) ∈ B1 × B2, we define

fω,a(Z
(1)
i ) =

∑
j

ψω,a(rij)Z
(2)
j . (4.3.1)
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Lemma 4.11. There exists an injective homomorphism G1 → G2 if there exists an injective
map  : B1 → B2 (as sets) such that for any b ∈ B1 there exists a finite slice containing (b, (b)).

Proof. Set r(b) = (b, (b)) ∈ B1 × B2 for b ∈ B1. Let {ω1, . . . , ωv} be a minimal set of distinct
finite slices such that

∪
i ωi contains r(B1). For each b ∈ B1, let ı(b) be the unique element of

{1, . . . , v} with r(b) ∈ ωı(b).
We show that the sum

∑
i fωi,ai gives an injection D(G1) → D(G2) for sufficiently general

(ai) ∈ kv. Let Γω,a denote the |B1| × |B2|-matrix
(
ψω,a(b(1), b(2))

)
, where (b(1), b(2)) ∈ B1 × B2.

Note Γω,a is the matrix expression of fω,a, see (4.3.1). Put Γ :=
∑

i Γωi,ai and write Γ = (γb,b′),
where (b, b′) ∈ B1×B2. It suffices to show that rk Γ = |B1| for sufficiently general (ai) ∈ kv. From
now on we consider {ai} as a set of independent indeterminates. Let C = (cb,b′)(b,b′)∈B1×B1

be
the |B1| × |B1|-matrix defined by cb,b′ = γb,(b′). It is enough to show that det(C) 6= 0. Consider
the terms of

det(C) =
∑

ζ∈Aut(B1)

(−1)sgn(ζ)
∏

b∈B1

cb,ζ(b). (4.3.2)

Note that each entry cb,b′ is zero or is of the form apj

i for some i ∈ {1, . . . , v} and for some
j ∈ Z≥0, and moreover we have cb,b′ = ape

i if and only if (b, (b′)) ∈ ωi and ηωi(b, (b
′)) = e (see

Definition 4.10 for the definition of η). Hence for every ζ, the term
∏

b∈B1
cb,ζ(b′) is zero or is of

the form
v∏

i=1

a

P

e∈Si
pe

i (4.3.3)

for some finite set Si of non-negative integers. Moreover for any nonzero term, we can recover
ζ from the form (4.3.3). Indeed the factor ape

i should come from cb,b′ for some b, b′ ∈ B1 with
(b, (b′)) ∈ ωi and ηωi(b, (b

′)) = e, and such a pair (b, b′) is unique, since ηωi is an injective map
from ωi to Z≥0 (Definition 4.10); hence ζ is determined by ζ(b) = b′. Thus we need only find a
non-zero term of (4.3.2). Writing ηb = ηωı(b)

, the term with ζ = id is equal to

∏
b∈B1

(aı(b))
pηb(r(b))

=
v∏

i=1

a

P

ı(b)=i pηb(r(b))

i ,

which is not zero.

4.4 Proof of Theorem 1.1

The proof of Theorem 1.1. Let G be a BT1 of final sequence ν. Set m = mν , n = nν and
e = eν . The aim is to prove that there exists an injective homomorphism H⊕e

m,n[p] → G. Let
B1 = (B1, δ1) be the final type of H⊕e

m,n[p], and let B2 = (B2, δ2) be the final type of G. Put
D := Dν (⊂ B2) and let γ be the partition map defined in Definition 4.4. Recall (4.2.1) that
there exists an isomorphism as final types

κ : B1
∼−−−−→ (D, γ). (4.4.1)

Let τ±
1 , χ±

1 and τ±
2 , χ±

2 be the functions defined in (4.2.3) and (4.2.4) for B1 and B2 respectively.
Set E := {c ∈ D | χ+

2 (c) = τ+
2 (c)} and write E := (E, γ|E). By Corollary 4.8, the final type

E can be seen as a direct factor of both of B2 and (D, γ). Hence removing the direct factors
κ−1(E) and E from B1 and B2 respectively, we show the existence of an injection from the
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remaining direct factor of B1 to that of B2. By Lemma 4.11, it suffices to show that for any
b ∈ B1 \ κ−1(E) there exists a finite slice containing (b, κ(b)). Let b ∈ B1 \ κ−1(E) and put
c := κ(b). By Proposition 4.7, we have χ+

2 (c) < τ+
2 (c) and χ−

2 (c) < τ−
2 (c).

Since τ+
1 (b) = χ+

2 (c) by (4.4.1), we have τ+
1 (b) < τ+

2 (c). Hence there exists `+ ∈ Z≥0 such
that {

δ1(πi
1(b)) = δ2(πi

2(c)) for 0 ≤ i < `+,

δ1(πi
1(b)) = 0 and δ2(πi

2(c)) = 1 for i = `+.

Since τ−
1 (b) = χ−

2 (c) by (4.4.1), we have τ−
1 (b) > τ−

2 (c). Hence there exists `− ∈ Z≤−1 such that{
δ1(πi

1(b)) = δ2(πi
2(c)) for `− < i < 0,

δ1(πi
1(b)) = 1 and δ2(πi

2(c)) = 0 for i = `−.

Thus {(πi
1(b), π

i
2(c)) | `− < i ≤ `+} is a finite slice.

5 Extensions by minimal p-divisible groups

In this section we prove Theorem 1.2 and some corollaries. Let k be an algebraically closed field
of characteristic p and set W = W (k) and A = Ak. In this section all p-divisible groups and all
BT1’s will be over k, and all Dieudonné modules will be over W .

5.1 Proof of Theorem 1.2

It suffices to prove the following, which is a stronger assertion than Theorem 1.2.

Proposition 5.1. Let M1 = D(Hc,d ⊗ k) with c, d ≥ 0 and gcd(c, d) = 1. Let Q be a DM1

and φ a surjective A-homomorphism Q → M1/pM1. Set P = Ker φ. (Note P is also a DM1

by Lemma 2.2). Then for any free Dieudonné module M2 such that M2/pM2 ' P , there exist
a free Dieudonné module M , a surjection f : M → M1 and an isomorphism g : M/pM ' Q
commuting

M
f−−−−→ M1y y

M/pM
φ◦g−−−−→ M1/pM1

such that Ker f ' M2.

Proof. If c or d is zero, then the homomorphism φ : Q → M1/pM1 has a splitting; hence the
proposition holds obviously. From now on we assume c, d > 0.

Let u = min{c, d}. Recall Lemma 3.3 that M1 is generated over A by X1, · · · , Xu and all
relations are generated over A by FαiXi − Vβi+1Xi+1 = 0.

Let
∑t

l=1(ml, nl) be the Newton polygon of M2. Then

M2 ⊗W frac(W ) ∼−−−−→
t⊕

l=1

D(Hml,nl
) ⊗W frac(W ). (5.1.1)
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Let el ∈ M2 ⊗W frac(W ) be the highest element of D(Hml,nl
). Let ϑl be the endomorphism of

Hml,nl
defined just after Definition 3.1. We define a commutative discrete valuation ring

Rl := W [θl]/(θml+nl
l − p)

and set Ll = frac(W )[θl]/(θml+nl
l − p) = frac(Rl). We extend the action of the Frobenius σ on

W to that on Ll by the rule θσ
l = θl. Note the W -homomorphism

Rl −−−−→ D(Hml,nl
⊗ k) (5.1.2)

defined by sending f(θl) to f(ϑl)el is isomorphic.
Let Y1, · · · , Yw be a W -basis of M2. Since there is an exact sequence

0 −−−−→ M2/pM2 −−−−→ Q −−−−→ M1/pM1 −−−−→ 0, (5.1.3)

it follows that Q is generated over k[F ,V] by Y 1, · · · , Y w,FrZi,VsZi (0 ≤ r ≤ αi and 0 ≤ s <
βi) and all relations are generated over k[F ,V] by relations only in Y 1, · · · , Y w and relations of
the forms

FαiZi − Vβi+1Zi+1 =
∑

j

cijY j (5.1.4)

with cij ∈ k.
We will define M to be an A-submodule of (M1 ⊕ M2) ⊗W frac(W ) generated by M2 and

FrZi (0 ≤ r ≤ αi) and VsZi (0 ≤ s < βi)

for i = 1, 2, · · · , n where Zi is of the form:

Zi = Xi +
t∑

l=1

ailel

for some ail ∈ Ll, which will be chosen later so that M has the required properties.
Let c̃ij ∈ W be a lift of cij and define bil ∈ Ll by∑

l

bilel =
∑

j

c̃ijYj .

It suffices to show that there exists a solution {ail} (1 ≤ i ≤ u, 1 ≤ l ≤ t) satisfying

FαiZi − Vβi+1Zi+1 =
∑

l

bilel. (5.1.5)

Comparing the coefficients of el of the both sides of (5.1.5), we obtain

aσαi

il θnlαi
l − aσ−βi+1

i+1,l θ
mlβi+1

l = bil (5.1.6)

for i ∈ Z/uZ. Since l is the same in each equation, it suffices to solve the simultaneous equations
for each l. Writing ai, bi, n, m, θ and L for ail, bil, nl, ml, θl and Ll respectively, we have

aσ
Pu

i=1(αi+βi)

1 θ
Pu

i=1(nαi−mβi) − a1 =
u∑

i=1

bσ
β1+

P

i<j≤u(αj+βj)

i θ−mβ1+
P

i<j≤u(nαj−mβj). (5.1.7)
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It suffices to show that this has a solution a1 ∈ L; then we get a required solution {ai}u
i=1 from

(5.1.6).
Put z := a1 and % := σ

Pu
i=1(αi+βi). Note % 6= 1 by αi, βi > 0. We also put ε :=

∑u
i=1(nαi −

mβi) and v := RHS of (5.1.7). Then (5.1.7) is written as

z%θε − z = v. (5.1.8)

If ε > 0, we have a solution z =
∑∞

`=0 θ`ε(−v)%`
. Also if ε < 0, we have a solution z =∑∞

`=1 θ−`εv%−`
. Finally we consider the case ε = 0. Write z =

∑m+n−1
i=0 ziθ

i and v =
∑m+n−1

i=0 viθ
i

with zi, vi ∈ frac(W ). It suffices to solve z%
i −zi = vi for each 0 ≤ i < m+n. There exist elements

yj of W for all integers j ≥ ordp(vi) such that zi =
∑∞

j=ordp(vi)
pjyj is a solution. Indeed, putting

zij :=
∑

j′<j pj′yj′ , we can find yj′ successively so that z%
ij−zij ≡ vi (mod pjW ). Let j ≥ ordp(vi)

and suppose that we have already got such yj′ for j′ < j. Since % 6= 1, there exists a solution
yj ∈ k of the Artin-Schreier equation y%

j − yj = (p−j(vi − z%
ij + zij) mod pW ). Let yj be a lift of

yj . Then clearly zi :=
∑∞

j=ordp(vi)
pjyj is a solution of z%

i − zi = vi.

We obtain the “dual” of Proposition 5.1:

Proposition 5.2. Let M1 = D(Hc,d) with c, d ≥ 0 and gcd(c, d) = 1. Let Q be a DM1 and
φ an injective A-homomorphism M1/pM1 → Q. Set P = Cokerφ. (Note P is also a DM1 by
Lemma 2.2). Then for any free Dieudonné module M2 such that M2/pM2 ' P , there exist a
free Dieudonné module M , an injective A-homomorphism f : M1 → M and an isomorphism
g : Q ' M/pM commuting

M1
f−−−−→ My y

M1/pM1
g◦φ−−−−→ M/pM

such that Coker f ' M2.

Proof. Let N be a free Dieudonné module and let N1 be a DM1. Their duals are defined by
Ň := HomW (N,W ) and Ň1 := Homk(N1, k) with F and V-operations defined by (Fϕ)(x) =
ϕ(Vx)σ and (Vϕ)(x) = ϕ(Fx)σ−1

, where (ϕ, x) ∈ Ň ×N and (ϕ, x) ∈ Ň1×N1 respectively. The
dual of N/pN is canonically isomorphic to Ň/pŇ .

We can apply (M̌1, Q̌, φ̌, P̌ , M̌2) to (M1, Q, φ, P,M2) in Proposition 5.1. Then there exist a
free Dieudonné module M ′, a surjection f ′ : M ′ → M̌1 and an isomorphism g′ : M ′/pM ′ ' Q̌
commuting

M ′ f ′
−−−−→ M̌1y y

M ′/pM ′ φ̌◦g′−−−−→ M̌1/pM̌1

such that Ker f ′ ' M̌2. Then (M,f, g) := (M̌ ′, f̌ ′, ǧ′) satisfies all required conditions.

5.2 Proof of Corollary 1.3

Let ν be a final sequence, and set m = mν , n = nν and e = eν . Recall ρν = m/(m + n).

15



Corollary 5.3. There exists a p-divisible group G such that

(i) FS(G[p]) = ν and

(ii) ρ1(G) = · · · = ρe(G) = ρν . (See (2.2.3) for the definition of ρi(G).)

Proof. This follows immediately from Theorem 1.1, Proposition 5.2 and Proposition 4.2.

Then Corollary 1.3 follows from Proposition 4.2 and Corollary 5.3.

Corollary 5.4. ρν = max{c/(c + d) | νc,d is embeddable into ν}.

Proof. Theorem 1.1 says that νm,n is embeddable into ν; hence LHS ≤ RHS. If νc,d is embeddable
into ν, then it follows from Theorem 1.2 that there exists a p-divisible group G with FS(G[p]) = ν
containing slope c/(c + d). Note c/(c + d) is less than or equal to the last Newton slope ρ1(G)
of G, and we have ρ1(G) ≤ ρν by Corollary 1.3. Hence we have LHS ≥ RHS.

5.3 Proof of Corollary 1.4

The proof of Corollary 1.4. The “only if”-part follows immediately from Theorem 1.1. Let us
give two proofs of the “if”-part. Let G be a minimal and indecomposable BT1, i.e., G ' Hc,d[p]
for non-negative integers c, d with gcd(c, d) = 1. Let ν be the final sequence of G. Assume
G were not BT1-simple. From this assumption, G can be written as a successive extension
of {Hmi,ni [p]}t

i=1 for some t ≥ 2 by Theorem 1.1 and Lemma 2.2. Note c =
∑t

i=1 mi and
d =

∑t
i=1 ni. Then by Theorem 1.2, there exists a p-divisible group G such that G[p] ' G and

G is a successive extension of {Hmi,ni}t
i=1. Note

NP(G) =
t∑

i=1

(mi, ni). (5.3.1)

First proof: The last Newton slope mt/(mt + nt) of G is greater than or equal to c/(c + d) by
(5.3.1). Corollary 1.3 says the last Newton slope is at most c/(c+d). Hence we get mt/(mt+nt) =
c/(c + d). From gcd(c, d) = 1 we have (c, d) = (mt, nt). This contradicts with t ≥ 2.
Second proof: We use Oort’s result [9]:

Let X be a p-divisible group over an algebraically closed field k. If X[p] ' H(ξ)[p] ⊗ k,
then X ' H(ξ) ⊗ k over k.

Then G ' Hc,d has to hold, since G[p] ' Hc,d[p]. However this contradicts with (5.3.1) and
t ≥ 2.
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