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ABSTRACT. We study the moduli space of principally polarized abelian vari-
eties in positive characteristic. In this paper we determine the Newton polygon
of any generic point of each Ekedahl-Oort stratum, by proving Oort’s conjec-
ture on intersections of Newton polygon strata and Ekedahl-Oort strata. This
result tells us a combinatorial algorithm determining the optimal upper bound
of the Newton polygons of principally polarized abelian varieties with a given
isomorphism type of p-kernel.

1. INTRODUCTION

We fix once for all a rational prime p. For an abelian variety A over an alge-
braically closed field of characteristic p, we have two objects: the p-divisible group
A[p™] and the p-kernel A[p], a truncated Barsotti-Tate group of level one (BTj).
By the Dieudonné-Manin classification, the isogeny classes of p-divisible groups are
classified by Newton polygons (cf. §2.2). On the other hand, the isomorphism
classes of polarized BT’s are classified by final elements of the Weyl group W,
of the symplectic group Sp,, (cf. §4.2). For a BT; G, we write G ~ w if the
isomorphism type of G is w. The following question is still open in general:

For a final element w of W, which Newton polygons can occur as

the Newton polygons N'(A) of principally polarized abelian varieties

(A,n) with Alp] ~w?
A purpose of this paper is to give a combinatorial algorithm determining the optimal
upper bound b(w) of such Newton polygons. The precise definition of b(w) is as
follows: any (A,n) with A[p] ~ w satisfies N'(A) < b(w) and there exists (A", n’)
satisfying A’[p] =~ w and N (A’) = b(w). We shall explain below the non-trivial fact
that b(w) exists.

In order to accomplish the purpose above, we investigate some stratifications
and foliations on the moduli space A, of principally polarized abelian varieties of
dimension g in characteristic p. For a symmetric Newton polygon &, we write Wg
for the open Newton polygon stratum (cf. §2.2). For a final element w of W, let
Sw be the Ekedahl-Oort stratum:

Sw={(A;n) € Ay | Alp] =~ w}.
In §4.3 we will give a brief review of some known facts on the Ekedahl-Oort strat-

ification. Among those, Oort showed that S, # 0 for every final element w of W
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and Ekedahl and van der Geer proved that S, is irreducible if S, is not contained
in the supersingular locus. The generic Newton polygon &(w) of S, is defined to be
the Newton polygon of the generic point of S,, if S, is not contained in the super-
singular locus and otherwise the supersingular Newton polygon. Since the Newton
polygon goes down or stays w.r.t. < under any specialization (Grothendieck-Katz
[15], Th. 2.3.1 on p. 143), we see that £(w) fulfills the conditions defining b(w); thus
b(w) exists and £(w) = b(w).

Let Z¢ be the central stream in Ay of the Newton polygon & (cf. §5.3) and let
S,, denote the Zariski closure of S, in Ag. We shall show

Main theorem. For any final element w of Wy, we have Z¢ () C S
The main theorem is closely related to [24], (6.9):
Oort’s conjecture. If Wg NSy # 0, then Z¢ C Sw-

Indeed in [11], Cor. 3.7, it was proved that the main theorem and the conjecture
are equivalent. Thus we obtain

Corollary I. Oort’s conjecture is true.

Here is another corollary. Let ¢ be any symmetric Newton polygon with Z¢ C S,,.
Since the Newton polygon of every point of Z¢ is £ and the generic Newton polygon
of S, is £(w), we have € < £(w) by Grothendieck-Katz. Hence the main theorem
implies

Corollary II. {(w) is the biggest element of the set { £ | Z¢ C Sy, } with respect
to <.

This gives a purely combinatorial algorithm determining £(w). Indeed we have
Z¢ = Sy, for a certain final element we € W (cf. §5.3), and there is an algorithm
determining weg for a concretely given & (see [11], Cor.4.27); by using Wedhorn’s
result in [28] (see Th.4.3.2 below for a copy) and Rem. 4.3.3 we can check whether
Ze C S, for a concretely given ¢ and w; thus it is possible to describe the set
{¢| Z¢ € Sy} for a given w; finally find the biggest element in the set, which exists
and is equal to {(w).

See [9] for a more effective algorithm determining the first slope of {(w). We see
a beautiful similarity between Cor.II and the result [7], Th.5.4.11 of Goren and
Oort in the case of Hilbert modular varieties over inert primes.

Let us explain the structure of this paper. The first five sections consist of
preliminaries, where we recall some fundamental facts on p-divisible groups, F-
zips, stratifications and foliations on A, and we also prove some auxiliary results
used later on. The heart of this paper is Section 6, where we show that, to prove
the main theorem, it suffices to construct a certain family of p-divisible groups with
constant Newton polygon and with constant p-kernel type (Th.6.1.1), and then give
the reader our idea on how to construct such a family. The remaining sections are
devoted to realizing the construction. The key propositions for the construction are
Prop. 7.6.1 and 8.3.1. In Prop. 7.6.1 we construct a non-trivial self-dual complex of
F-zips and in Prop.8.3.1 we lift such a self-dual complex of F-zips to a self-dual
complex of displays.
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Notations.

e N = Z~ ¢ the set of natural numbers.

e For m,n € Zso, we denote by ged(m,n) the greatest common divisor,
where for convenience we set ged(m,0) = ged(0,m) = m for Vm € Z>o.
We say that m,n € Z>¢ are coprime if ged(m,n) = 1.

e For z € R, let |z] be the biggest integer < z and [z] the smallest integer

>x.

For an integral domain R, we denote by frac(R) the fractional field of R.

W (R) the ring of Witt vectors with coordinates in R.

W, the Weyl group of the symplectic group Spy,.

JW the set of final elements in W,.

ZV the dual of an F-zip Z.

GV the Cartier dual of a commutative finite group scheme G.

X! the Serre dual of a p-divisible group X.

M the dual Dieudonné module (display) of a Dieudonné module (display)

M.

At the dual abelian variety of an abelian variety A.

Ay the moduli of principally polarized abelian varieties in characteristic p.

We the Newton polygon stratum for a symmetric Newton polygon &.

Ce,C(x,) the central leaf for x € A, or a principally quasi-polarized p-

divisible group (X,1).

T, the isogeny leaf for x € A,.

Z¢ the central stream for a symmetric Newton polygon &.

S,, the Ekedahl-Oort stratum for w € /W.

H(¢) the minimal p-divisible group of &.

we the element of W corresponding to the p-kernel of H(¢).

&(w) the generic Newton polygon of S,, for w € JW.

2. p-DIVISIBLE GROUPS

We start with reviewing the display theory (Zink [29]) on the classification of
p-divisible groups. Also we recall the definition of Newton polygon stratification.

For a commutative ring R, let W(R) denote the ring of Witt vectors with coor-
dinates in R. Let o :  — %z be the Frobenius on W(R) and let 7: 2 — "z be the
Verschiebung on W (R). Put Ir = "W(R) and Ir,, = 7 W(R) for n € N, which
are ideals of W (R).

2.1. Displays. First we briefly review the Dieudonné theory. Let K be a perfect
field of characteristic p. Let Ex be the p-adic completion of the associative ring

W(K)F V) (Fx = aF,V°x — a2V, FV — p,VF — p,Va € W(K)). (2.1)

A Dieudonné module over W(K) is a left Ex-module which is finitely generated
as a W(K)-module. The covariant Dieudonné theory says that there is a canonical



4 S. HARASHITA

categorical equivalence D from the category of p-divisible groups (resp. p-torsion
finite commutative group schemes) over K to the category of Dieudonné modules
over W(K') which are free as W(K)-modules (resp. of finite length). Note that D
satisfies D(G) = M(GV) for a finite commutative group scheme G, where GV is the
Cartier dual of G and M is the contravariant Dieudonné functor (cf. [4], Chap. III).
We write F' and V for “Frobenius” and “Verschiebung” on commutative group
schemes. The covariant Dieudonné functor D satisfies D(F) =V and D(V) = F.

Zink [29] introduced the notion of display and classified formal p-divisible groups
over very wide range of rings, generalizing the Dieudonné theory. For a W (R)-
module P, we write P7 = W(R) ®q.w r) P-

Definition 2.1.1. A display over R is a quadruple (P,Q,F,V~!), where P is a
finitely generated projective W (R)-module, Q C P is a submodule and F and V!
are W (R)-linear maps F : P — P and V= : Q% — P such that

(1) IrP C Q C P and there exists a decomposition P = L & T as W(R)-
modules such that Q = L & IRT;

(2) V=1:Q° — P is an epimorphism;

(3) For x € P and w € W(R) we have V=}(1 ® Twz) = wF (1 ® z);

(4) (P,Q,F, V1) satisfies the V-nilpotence condition ([29], before Def. 11).

Zink showed [29], Th. 9:

Theorem 2.1.2. Assume R is an excellent local ring or a ring of finite type over
a field k of characteristic p. Then there is a canonical categorical equivalence from
the category of displays over R to the category of formal p-divisible groups over R.

Remark 2.1.3. Let X be a formal p-divisible group over a perfect field K. The
display of X is given by the quadruple (M, VM, F,V~1), where M is the Dieudonné
module of X and the others are naturally defined by the F, V-operations on M.

2.2. The NP-stratification. A pair (m,n) of coprime non-negative integers is
called a segment. For a series of segments (m;,n;) (i = 1,...,t) satisfying A\; <
<o < A with A; = my/(m; +n;), putting Py == (31_, (m; +n;),Y1_, m;) € R? for
0 < j < t, we denote by >_,(m;,n;) the line graph in R? passing through P, ..., P
in this order. We call such a line graph a Newton polygon. M\ is called the last
Newton slope. We say, for two Newton polygons &, & with the same end point,
that ¢ < £ if no point of £ is below £’. A Newton polygon ). (m4,n;) is said to be
symmetric if A; + Ag1—; = 1 for all ¢ = 1,...,t. The symmetric Newton polygon
>-;(1,1) is called supersingular.
For a segment (m,n), we define a p-divisible group G, ,, over F, by

D(Gmn) = Er,/Er, (F™ = V"). (2.2)

By the Dieudonné-Manin classification [18], for any p-divisible group X over a
field K of characteristic p, there is an isogeny over an algebraically closed field (2
containing K from X to @_, Gy, n, for some finite set {(m;,n;)} of segments.
Thus we get a Newton polygon .(m;,n;), which is denoted by N (X). For an
abelian variety A, we have its Newton polygon N(A) := N (A[p>]). Note that
N(A) is symmetric.

For a symmetric Newton polygon £ of height 2¢g, we define its NP-stratum by

We ={(A,n) € Ag|N(A) < &}
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Grothendieck and Katz ([15], Th. 2.3.1 on p. 143) proved that Wk is closed in Ag;
we consider this is a closed subscheme by giving it the induced reduced scheme
structure. We also define the open NP-stratum by

We = {(A,n) € Ag|N(4) = ¢}

similarly we regard Wg as a locally closed subscheme of A,.

3. THE FIRST DE RHAM COHOMOLOGY

Let S be a scheme of characteristic p. Let f : A — S be an abelian scheme
over S. Let Fg be the absolute Frobenius and let f®) : A®) — S denote Fg x f :
S xpss A — S Let F: A — A® be the relative Frobenius. We consider
the first de Rham cohomology sheaf N = H}(A/S), which is a locally free Og-
module. Recall N is equipped with two canonical subsheaves C' := f*Q}4 /s and
D = R! ffp ) (HO(FL.Q2 ss))- The Cartier isomorphism induces canonical isomor-
phisms ¢ : (N/C)®) — D and ¢ : C®) — N/D. If A has a principal polarization
7, it induces an alternating perfect pairing ( , ) on N. Thus from (A, n) we have a
polarized F-zip

Fz(A,n):= (N,C,D,p,0,(, )). (3.1)
We start with reviewing the abstract definition of (polarized) F-zips for the reader’s
convenience. In this paper if we simply say (polarized) F-zip, it means (symplectic)
F-7ip of type with support contained in {0,1} in the terminology of [21] and [27].

3.1. F-zips. For an Og-module M we write M®) = FiM.

Definition 3.1.1. An F-zip over S is a quintuple Z = (N, C, D, ¢, ¢) consisting of
locally free Og-module N and Og-submodules C, D of N which are locally direct
summands of N, and Og-linear isomorphisms

o: (NOYP) — D,  ¢:C® — N/D.

If S is connected, we define the height of Z to be the rank of N and the type of
Z to be a map from {0,1} to Z> sending 0 to rk D and 1 to rk C; we will simply
write the type as (rtk D,rk C).

Definition 3.1.2. Let Z1 = (NhCl,Dl,Lpl,gbl) and Z2 = (N27C12,D2,(p2,§b2) be
two F-zips over S. The set Homg(Z1, Z2) of homomorphisms as F-zips consists of
elements p of Homeo4 (N1, N2) such that

(1) ;L(Cl) C Cy and [L(Dl) C Do,
(2) powr =pyopu® and popy = ¢y op®.
3.2. Polarized F-zips. For an Og-module N, we write N¥ = Homeo4(N,Og). A
pairing ( , ) : N ®os N — Og canonically induces a pairing on N ®):
()P N® gy NO) —— 0P ~ 0,

where the last isomorphism is defined by gluing the canonical isomorphisms R®,, r
R ~ R over affine open subschemes Spec(R) C S.

Definition 3.2.1. Let Z = (N,C, D, ¢, ) be an F-zip. A polarization on Z is a
perfect alternating pairing on N:

(,)Y: N®op, N —— Og

(“alternating” means (z, z) = 0 for all z € N) such that
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(1) C and D are totally isotropic, and
(2) (py, ) = (y,2)® for 2 € NP and y € CP). (The LHS makes sense by
(1). See [21], (5.2) and [27], (2.3) for an equivalent condition.)

We call such a pair (Z, (, )) a polarized F-zip.

3.3. The dual of an F-zip. Let Z be an F-zip (N,C,D,¢,¢). We define the
dual F-zip ZV of Z by

(N, (N/C)Y,(N/D)Y, (")~ (¥") 7).

Clearly a homomorphism f : Z; — Z5 induces a homomorphism fV : Z3 — ZY
canonically. Note that a polarization { , ) on Z gives an isomorphism Z — Z" of
F-zips.

3.4. Truncated Barsotti-Tate groups of level one (BT;).

Definition 3.4.1 ([13]). Let S be an F,-scheme. A finite locally free commutative
group scheme G over S is said to be a BT if it is annihilated by p and Im(V :
G®) — @) =Ker(F: G — GWP).

Note that the p-kernel of a p-divisible group is a BT;. Let K be a perfect field.
For a BTy G over K, putting N = D(G) we have an F-zip

fz(G) := (N, VN, FN,F, V1. (3.2)

Definition 3.4.2. Assume K is perfect. Let G be a BTy over K. A symmetry

of G is an isomorphism from G to its Cartier dual GV. A symmetry 1 is called
a polarization if the bilinear form ( , ) : D(G) ®x D(G) — K induced by ¢ is
alternating: (z,z) = 0 for all z € D(G). A polarized BT is a pair (G, 1) consisting
of a BT G and a polarization 2.
For a polarized BT, (G,1) over K we have a polarized F-zip
f2(G,1) == (N, VN, FN,F,V='(, ), (3.3)
where N = D(G) and ( , ) is the polarization induced by .

Remark 3.4.3. Over a perfect field, fz makes a categorical equivalence from the
category of (polarized) BT;’s to that of (polarized) F-zips. Moreover if Z = fz(G),
then ZV = fz(G"), where GV is the Cartier dual of G.

3.5. Displays modulo Iy. In this subsection we show that the reduction modulo
IR of a display over R defines an F-zip over R.
Let M = (P,Q,F,V~!) be a display over R. Put N = P/IgP and C = Q/IrP.

Lemma 3.5.1. F induces an injective homomorphism (N/C)®) — N.
Proof. Let P =L @& T be a normal decomposition. Then
C=Q/IrP = (L& IrT)/(IrL & IgT) =L/IgL
and N/C =T/IrT. Recall that the W(R)-linear homomorphism
VieF: L°@T° —— P (3.4)
is an isomorphism ([29], Lem. 9). Note that the map W (R) ®,.w ) T — R ®o.r

(T'/IgT) induces a canonical isomorphism from (77 /IrT?) to (T/IRT)(p) = (N/C)(p).
Hence we have the injection F : (N/C)®) — N. O
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We define a submodule D of N to be the image of the injection obtained in
Lem. 3.5.1, namely D is the F-image of T in N. Note that D is independent of
the choice of the normal decomposition.

Lemma 3.5.2. V™! induces an isomorphism C?) — N/D.

Proof. Let P = L & T be a normal decomposition. Since C consists of classes of
elements of L and D is the F-image of T, the isomorphism (3.4) shows that the
composition

V—l

c®) N N/D
is bijective. O

Thus from M we canonically obtain an F-zip (N,C, D, F,V~!), which will be
denoted by M/IrM.

Next we consider the case that M is equipped with a principal quasi-polarization
(', ), where a quasi-polarization is a non-degenerate alternating bilinear form (, ) :
P @w gy P — W(R) such that

TVl le), Vi (1ey) = (z,y) (3.5)

for z,y € Q, and it is called principal if the bilinear form is perfect.
The principal quasi-polarization ( , ) induces a perfect alternating bilinear form
(,): N®grN — R. The next lemma says that this is a polarization on M/IrM.

Lemma 3.5.3. (1) C and D are totally isotropic.
(2) (¢y, o) = (y,2)® for z € N®) andy € CP).

Proof. (1) For z,y € L, we have (z,y) = (V™ 1z, V~1y) € Ig. Since C is generated
by classes of elements of L, we have (C,C) = 0. For x,y € T, we have

(Flew),Fley) ="V (1e 1),V (1o 1y) = (T1z,"1y) = ("1)*(z,y).

Hence (F(1® z),F(1®y)) € Ig. Since D is the F-image of T in N, we have
(D, D) = 0. Since (, ) is perfect on N, both of C' and D have to be totally isotropic.

(2) This follows immediately from the fact (V"1(1 ® y), F(1® x)) = (y, ) for
every y € Q and = € P, see [29], (20) after Def. 18. O

Definition 3.5.4. Let R be asin Th.2.1.2. Let X be a (principally quasi-polarized)
formal p-divisible group over R and let M be the associated (principally quasi-
polarized) display obtained by Th.2.1.2. The (polarized) F-zip of X is defined to
be Fz(X) := M/IzpM.

4. CLASSIFYING DATA OF F-ZIPS

In this section let k denote an algebraically closed field of characteristic p. We
recall the classification of (polarized) F-zips over k. Originally the classification of
BTy’s is due to Kraft [16], and that of polarized BT;’s is due to Oort [23]. Now
Moonen [20] and Moonen-Wedhorn [21] gave a more conceptual reinterpretation
and a generalization by using Weyl groups.

Let G be a connected reductive group over k. Let W = W be the Weyl group
and I be its set of simple reflections. For a subset J C I, we denote by W the
subgroup of W generated by the elements of J. Let /W be the set of (., ))-reduced
elements of W ([2], Chap. IV, Ex. §1, 3), which is a set of representatives of W;\W.
We call an element of YW a final element of W with respect to J.
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4.1. The unpolarized case. Let G = GL;. Let W be the Weyl group of G.
We identify W and Aut({l,...,h}) in the usual sense. Note that W is generated
by simple reflections s; = (i,4 + 1); write I = {s1,...,8,_1}. Let us explain the
classification of F-zips over k of type (ho, h1) with ho + hy = h.

Theorem 4.1.1 ([21], (4.4)). There is a canonical bijection

~

g {F-zips over k of type (ho,h1)} ) ~ —— W,

where J = J,ny) 15 the parabolic type associated to (ho,hy1); explicitly TW s
described as {w € W | w™t(1) < - <w ™ (hy), w(hi+1) < - <w 1(h)} (see
[21] (1.9)).

There are some equivalent classifying data of F-zips. First in order to explain
the inverse map of £"", we introduce final types. A final type of type (ho,h1) is a
pair (B, d) consisting of a totally ordered finite set B and a map ¢ : B — {0,1}
with h, = #{b | 6(b) = *} for x = 0,1. For two final types B = (B,J) and
B' = (B',d"), we say B and B’ are isomorphic if there exists a bijection f from B
to B’ preserving order such that 6 = ¢’ o f. For a final type (B, ), there exists a
unique automorphism 7 = w5 of B such that m(b') > w(b) < §(b') > 6(b) for any
b < b, see [11], Lem.4.3 (1). To w € /W, we associate a final type B = (B, §) with
B = {by < --- < by} defined by 6(b;) = 1 if w(i) < hy and §(b;) = 0 if w(i) > hy.
We have 7(b;) = bpgyw(i) for 6(b;) =1 and m(b;) = byyiy—n, for d(b;) = 0.

For w € /W, we define an F-zip Z,, = (N,C, D, ¢, ¢) over F, as follows. This
gives the inverse map of £". Let B = (B,d) be the final type of w. Write B =
{bi <--- < b} and set m = w5. First N is an F,-vector space with basis indexed
by b1,...,by, simply say N = @?:1 F,b;; and we define C' = @MM:I F,b; and
D= @5(bi):0 F,7m(b;) with ¢ and ¢ given by

(p(b,) = ﬂ(b,) if (5([)1) = 0,

and

5(b) 1= w(b) it 6(b) =1, 6(x(h;)) =1,
POTT Cr) i 6(b) = 1, 8(x(by)) = 0.
Definition 4.1.2. Let S’ be an S-scheme. An F-zip Z over S is called S’-split
of type w if Z is isomorphic to Z, over S’. We define a BT; G,, over F, by
f2(Gw) = Zu.

We will use another classifying datum. A final sequence of type (ho, h1) is a map
v: {0,...,h} —— {0,...,ho}

such that v(0) = 0 and v(i—1) < v(i) < v(i—1)+1fori=1,...,h. Tow € "W, we
associate a final sequence v = v, of type (ho, h1) defined by v (i) = Z;Zl(l—é(b_j)),
where ({b;},9) is the final type of w.

Note that the correspondences above give

JW ~ {final types of type (ho, h1)}/~ ~ {final sequences of type (ho, h1)}.



GENERIC NEWTON POLYGONS OF EKEDAHL-OORT STRATA 9

4.2. The polarized case. Let W = W, be the Weyl group of Spy,. We can
identify W in the usual way to

W= {w e Aut({1,...,2¢9}) | w(i) + w(2g +1—14) =29+ 1}. (4.1)
Let I be the set of simple reflection {s1,...,s,}, where
i+ (29 —4,2g+1—4) fori<g, (4.2)
(9,9+1) for i = g. '

Note that W is generated by I. Set J = I\ {s,}. We know that W; and /W are
given by

W, = {weW]|w{l,...,9})={1,...,9}}, (4.3)
TW = {weW|w (i) <w '(j) for any 1 <i < j < g}. (4.4)
Theorem 4.2.1. There is a canonical bijection
E: {polarized F-zips over k} | ~ ——— JW.

Remark 4.2.2. In [23] Oort gave the classification in terms of polarized BT’s and
elementary sequences defined below. The description in 4.2.1 is found in Moonen-
Wedhorn [21], (5.4); also see Moonen [20] for p > 2.

Let B = (B,0) be a final type with B = {b; < --- < b, }. The dual final type
BY = (BY,4Y) is defined as BY = {b) < --- < b/} and 6V (b)) = 1 — &(b;). Put
7 =7 and 7V = mgv. Then we have 7(b) = c if and only if 7V (bY) = ¢V. We say
(B, d) to be symmetric if (B,d) is isomorphic to (BY,48Y). If B is symmetric, then
h is even and B is of type (g, g) with h = 2g.

To an element w € YW, we associate a symmetric final type (B,d) defined by
B={b; <--- <byy} and 6(b;) =1 if w(i) < g and §(b;) = 0 if w(é) > g. Similarly
to the unpolarized case, m = 7s is given by m(b;) = byt for 6(b;) = 1 and
W(bl) = bw(i)—g for (5(()1) =0.

For w € "W, let Z,, = (N, C, D, ¢, ) be the F-zip defined as in §4.1. We define
a polarization ( , ), on Z, by

1 if i=j and 4&(b;) =0,
<biab2g+17j>w = -1 if 1 :j and 5(1)1) = 1,
0 if i#j.

Thus we have a polarized F-zip (Zy,(, )w), which will be written simply as Z,,,.

Definition 4.2.3. Let S’ be an S-scheme. For w € W, a polarized F-zip Z over
S is called S’-split of type w if Z is isomorphic to Z,, over S’ as polarized F-zips.
We define a polarized BT G, over F,, by f2(G,,) = Z,,. The local-local part of w
is the final element (of W, for some ¢’ < g) related to the local-local factor of G,,.

A symmetric final sequence of length 2g is a final sequence of type (g, g) of length
2g:
v: {0,1...,2g} —— {0,1,...,9}
satisfying ¢(29 — i) = g + (i) — i. An elementary sequence of length g is the
restriction of a symmetric final sequence of length 2¢g to {1,...,g}. Clearly to
give an elementary sequence of length ¢ is equivalent to giving a symmetric final
sequence of length 2g. For w € JW, we have a symmetric final sequence 1, defined

by (i) = 3751 (1 = 0(b;)).
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The correspondences above give

W ~ {sym. final type of length 29}~ =~ {sym. final seq. of length 2g}.

4.3. The Ekedahl-Oort stratification. The main reference for the Ekedahl-Oort
stratification is [23]. For a formulation in terms of Weyl groups, see [5], [6] and [20].
For w € W, the EO-stratum S,, is defined to be the subset of A, consisting of
points y € A, where y comes over some field from a principally polarized abelian
variety A, such that £(Fz(4,)) = w, see [23], (5.11). As shown in [23], (3.2), S,
has a natural structure of a locally closed reduced subscheme of A,.
Here are fundamental results on the Ekedahl-Oort stratification:

Theorem 4.3.1 ([23]). Let w be any element of 7W.
(1) Sy is not empty.
(2) Every irreducible component of Sy, has dimension £(w), the length of w.
(3) S, is quasi-affine for every w € 7W.
(4) Su C S, is equivalent to Sy NS, # 0.

Recently Wedhorn proved

Theorem 4.3.2 ([28]). For any two w,w’ € 7W, we have S,y C S,, if and only
if there exists an element u of Wy such that u= - w' - (woj - u-wp y) < w with
respect to the Bruhat-Chevalley order <. Here wy j is the element of W; sending
ittog+1—iforanyi=1,...,g.

Remark 4.3.3. Forw € Wand 1 <i,5 < 2g, we define r,,(i,j) := #{a < i | w(a) <
j}. It is known (cf. [5], §2.1 and [1], §3.3) that the Bruhat-Chevalley order is de-
scribed as follows: for w,w’ € W we have w' < w < 1y (i,5) > ry(i,7) for all 1 <
i,j < 2g.

Recall the result of Ekedahl and van der Geer:

Theorem 4.3.4 ([5], Th.11.5). Let w € W. If ¢, ([ (g +1)/2]) # 0, then S, is
1rreducible.

Remark 4.3.5. Note that ¢, (|(¢ + 1)/2|) = 0 if and only if S,, is contained in
the supersingular locus, see [3], (4.8), Step 2. Also see [9] for another proof and a
generalization.

Definition 4.3.6. Let £(w) denote the Newton polygon of the generic point of S,
if Sy, is not contained in the supersingular locus and otherwise the supersingular
Newton polygon. We call £(w) the generic Newton polygon of S,,.

5. FOLIATIONS

We recall some known facts on the foliations (central leaves and isogeny leaves)
and prove some new results we shall use later.

5.1. Minimal p-divisible groups. Firstly we review the theory of minimal p-
divisible groups [25].
Definition 5.1.1. For non-negative integers m,n with ged(m,n) = 1, we define a
p-divisible group H,, , over I, by

m+n—1

Py =D(Hpnn)= P Zpei (5.1)
=0
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with F,V operations:
Fei=¢eirn and Ve; =€y for VieZso, (5.2)
where €; (i € Z>m1rn) are defined as satisfying €;4m4n = pe; for i € Z>.
Let ¥ be the endomorphism defined by ¥(z;) = x;4+1; then we have
Endg, (Pn,n) = Zp[9]/ (9" = p).

Let 6 denote the endomorphism of H,, , corresponding to 9.

For an arbitrary perfect field K, the Dieudonné module P, ,, k = D(H, ., @ K)
has a W (K)-basis {eg, ..., emi+n—1} satisfying the equations (5.2), which is called a
minimal basis of Py, n i; and e (resp. emyn—1) is called the highest (resp. lowest)
element.

For a Newton polygon £ = Zle(ml, n;), we write

HE) =@ Hmm and  P) =D Py, (5.3)

Note that the Newton polygon of H (&) is equal to &.

Definition 5.1.2. A p-divisible group X is called minimal if there exist a Newton
polygon £ and an isomorphism from X to H({) over an algebraically closed field.
If a BTy G is isomorphic to H(&)[p] over an algebraically closed field, we call G
minimal, and also the F-zip fz(G) and the final element of G are called minimal.

5.2. Central leaves. Let k be an algebraically closed field of characteristic p. Let
(X,1) be a principally quasi-polarized p-divisible group over k. The central leaf for
(X,2) is defined by

Cixoy = {(4,n) € Ay | (A]p™],n[p™])a =~ (X,2)q over some alg. closed field Q}.

For a geometric point = € Ay, let (A,7n) be the associated principally polarized
abelian variety; we set C, 1= Cia[po]np=))- In [24], (3.3), it was proved that C, is
closed in Wg with £ = N(A); we consider this is a closed subscheme by giving it
the induced reduced scheme structure.

The next proposition says C(x,) # 0 for any principally quasi-polarized p-
divisible group (X,2). This result and the proof below are due to Oort (private
communication).

Proposition 5.2.1. Let (X,1) be a principally quasi-polarized p-divisible group over
k. Then there exists a principally polarized abelian variety (A,n) over k such that

(A[p>=]inlp>]) = (X, 1)
To prove this, we need a lemma;

Lemma 5.2.2. Let & be a symmetric Newton polygon. Let ¢V and ¢® be two
quasi-polarizations on H(€)y. For a sufficient large n > 0, we have (p™)*¢(V) =
uw*C?) for a certain isogeny w : H(&)y — H(E)y.

Proof. Let I, and I1I,. be the quasi-polarizations on H; ; and Hy 1@ H; ; respectively
defined in [24, 3.5] (also see [17, 6.1]), and let (4(m,n) be the quasi-polarization on
H,,, ® H, , defined in [24, 3.6]. Note that p*I, = I,;5 and p*IL, = II,;,, and
also p*Ca(m,n) = Cd+2(m+n) (m,n).
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Write & = s(1,1) + > .{(m4,n;) + (m4,n;)} with m; > n; and ged(mg,n;) = 1.
By [24, 3.7], ¢ for x = 1,2 is isomorphic to (™) (s, s) & D), g (mi,m;), where the
first factor is a direct sum of some quasi-polarizations of types ir and IT, (r € Z>g).

Hence it suffices to show the supersingular case and the case of £ = (m, n)+(n, m)
for m > n with ged(m,n) = 1. For the supersingular case, the lemma follows from
the fact that F*I, = 1,4 and F*IL. = II,,; and the fact that v* (I, ® I,) = IL,,
where u is defined as follows: note that I,.61,. is isomorphic to the quasi-polarization
defined by (z,Fy) = p" and (z, Fz) = (y,Fy) = (z,y) =0 on P11z & P11y ([17],
§6.1, Remark); then u is the isogeny corresponding to the inclusion

Piix® P Fy C Prix® Pry.

The case £ = (m,n) + (n,m) follows from the fact that v*(4(m,n) = (4+1(m,n),
where v is the isogeny 0 ©id : Hy, . @ Hyom — Hpn © Hy . O

Proof of Prop.5.2.1. Put £ = N(X). Since Wg # (), there exists a principally
polarized abelian variety (A;,n;) over k such that A;[p>°] is isogenous to X over k.
There exists an abelian variety As over k with an isogeny f : Ay — Aj such that
Az [p®™] is minimal and deg(f) is a power of p. We have a polarization 73 := f*n; on
Ay. Choose an isogeny v : Y — X with Y minimal and set 3 = v*1. By Lem. 5.2.2,
replacing f by fop™: As — A; for sufficient large n, we may assume that 7[p™] =
u*y for a certain isogeny u : A3[p™] — Y. Note that deg(n:) = deg(v)? deg(u)?
and this is a power of p. Let G := Ker(vowu) C A2 and set A = A3/G. Since G is
isotropic, i.e., n2(G) = 0, it follows from [22, Cor. on p.231] that 7o descends to a
polarization 1 on A; clearly deg(n) = 1. O

5.3. Central streams. Let £ be a symmetric Newton polygon. By [24], Prop. 3.7,
there exists a principal quasi-polarization 2 on H(£), which is unique up to isomor-
phism of H(§). Thus we have a central leaf

Ze = Clue) -
We call Z¢ the central stream of the Newton polygon &.

Theorem 5.3.1 (Oort, [25]). Let X be a p-divisible group over an algebraically
closed field Q. If X[p] ~ H(&)[p] ® Q, then X ~ H(§) ® Q.

Let we be the element of YW corresponding to (H(¢)[p],2[p]). Then Th.5.3.1
implies
Ze = S, (5.4)
By Th.4.3.4, Z; is irreducible if £ is not supersingular.

5.4. Isogeny leaves. Let k be an algebraically closed field. Let = € Wg (k). Oort
defined the isogeny leaf Z, in Wg , see [24], (4.2), and showed that Z, is closed in
W¢ and proper over k, see [24], (4.11).

Let R be an integral domain of finite type over k with dim(R) > 1 and let m
be a maximal ideal of R with R/m = k. Let X be a principally quasi-polarized p-
divisible group over R with XY ® (R/m) ~ A,[p>°]. Assume we are given a non-trivial
family over R of isogenies as polarized p-divisible groups

p: (H(E),)®R —— X. (5.5)

Let A; be a polarized abelian variety over k with isogeny p : A; — A, such that
Aq[p™>®] ~ (H(E),{)r and p[p™] ~ p® (R/m). Set G = Kerp. Then we have a
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principally polarized abelian scheme A = Ay /G over R (cf. [22, Cor. on p.231]).
Let T be the image of the induced morphism Spec(R) — Ag.

Lemma 5.4.1. T C Z, and dim(T) > 0.

Proof. By definition T is an H,-subscheme in Ay, see [24], (4.1). Hence T' C Z,.
Since p is non-trivial, dim(7T") > 0 follows from the rigidity of homomorphisms of
p-divisible groups (cf. [29], Prop. 40). O

6. STRATEGY

Now we explain how to prove the main theorem in § 1.

6.1. Reduction of the problem. Let k be an algebraically closed field of char-
acteristic p. In this subsection we prove that the main theorem follows from

Theorem 6.1.1. Assume w € 'W is not minimal. There exists a principally
quasi-polarized p-divisible group X over a positive dimensional irreducible scheme
S of finite type over k such that

(1) there is a non-trivial family of isogenies of quasi-polarized p-divisible groups:
(H(E(w)),¢) x 8§ —— X

for a certain quasi-polarization ¢ on H(&{(w)), and

(2) X is decomposed as X4 ® Y @ XE, with an étale p-divisible group X over
S and we have Fz(Y) ~ Zz x S (see Def. 3.5.4 for the definition of Fz()) ),
where W is the local-local part of w (see Def. 4.2.3).

The proof will occupy the rest of sections.

Remark 6.1.2. This theorem can be seen as a complement to Oort’s theorem [25]
(see Th.5.3.1 above). His theorem implies that if w is minimal, then there is no
such a family as in Th. 6.1.1. We also mention a relation to [26], (8.1), where Oort
constructed, for any non-minimal w, a positive dimensional non-trivial family of
p-divisible groups with p-kernel type w and with constant Newton polygon which
is the same as that of £L(G,,), where £(G,,) is the p-divisible group introduced in
[26], (2.5) (called the standard lift of G,,). However the Newton polygon of £(G,)
is not always equal to &(w) (e.g. w = (1,g+1,...,29 —1;2,...,9,29) € 'W for
g > 3) and also [26] takes no account of quasi-polarizations.

Here is a corollary:

Corollary 6.1.3. Assume w € W is not minimal. Then for every geometric point
x of Wg(w) N Sy, a component of Z, N S,, has dimension > 0.

Proof. By Th.6.1.1, Prop.5.2.1 and Lem.5.4.1, there exists a geometric point y
of Wg(w) N Sy such that a component of Z, N'S,, has dimension > 0. Note that
We(

so. Let x be any geometric point of Wg(w) NS,. By definition the central leaf C, is

) NSy is open dense in S, and therefore is regular (as a stack) because Sy, is

contained in Wg(w) NS, . Since a component of Z, NS, has dimension > 0, we have
dim Wg(w) NSy > dimC, (= dimCy); then [24], Th. 5.3 shows the corollary. O

Using the corollary, we can prove the main theorem.
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Proof of (Cor.6.1.3 = Main theorem). If w is minimal, then Z¢,) = Sy; hence
the main theorem is obviously true. Assume w is not minimal. Assume the main
theorem is true for all w’ with Sy C Sw. (The smallest case w.r.t. C is the
superspecial case w = id and in this case w is minimal.) According to Cor.6.1.3
there exists a geometric point x of Wg(w) N S, such that a component of Z, N S,,
has dimension > 0. Since Z, is proper and S,, is quasi-affine, there exists w’ with
S € S, such that we have S, NZ, # (). Clearly S, C S,, implies £(w’) < &(w),
and from Z, C Wg(w) and S,y NZ, # 0 we have £(w) < £(w'); hence we obtain
&(w) = &(w’). By the hypothesis of induction, we have Z¢(,) C Syu. Then
Z&(w) = Zg(w/) C Sw C Sy (I

6.2. Outline of the proof of Th.6.1.1. Let us explain the strategy of our proof
of Th.6.1.1. Let w € YW and assume w is not minimal. If £(w) is supersingular, C,
consists of points for any & € We(y); then Z, NS, is positive dimensional (because
w # id); hence there is nothing to prove; from now on we assume £(w) is not
supersingular. Write

t
E(w) =Y (my,my)
1=1
with Ay < -+ < A, where A} = my/(my; +ny). Put (d,¢) = (my1,n1) = (ng, my).
Since £(w) is not supersingular, we have t > 2 and ¢ > d.

Take a geometric point « : Spec(k) — Wg(w) N Syw- Let (A,n) be the principally
polarized abelian variety at = and set X = A[p>]. From the composition of an
embedding ¢ : D(X) — M(&(w))r and the natural projection pr : M(&{(w))r —
Mg, we have a homomorphism X — X;, where X; is the p-divisible group
corresponding to the image of proi. The homomorphism X — X; makes a self-
dual complex over k:

0 Xt X X, 0. (6.1)

This induces a self-dual complex of F-zips over k:

Co: 0 zy Loz P g 0. (6.2)

The proof consists of four steps. The first step is to prove that X is a minimal
p-divisible group, see the next subsection (Prop. 6.3.1). This is necessary for the
remaining steps. As the second step we shall extend C§ to a non-trivial self-dual
complex of F-zips
f\/

co: 0 ZY g Zs — 715 —— 0 (6.3)

over some positive-dimensional smooth scheme S over k (see Prop. 7.6.1 for more
precise statement. We remark that the F-zips are constant and only the homomor-
phism moves). The third step is to extend C* to a self-dual complex of p-divisible
groups

De 0 —— Xisl X Xl,S’ — 0 (64)

after some base extension S’ — S. This is done in Prop. 8.3.1. Finally, based on
this construction of X' from Cg, we find a family required in Th.6.1.1 (see §8.4).
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6.3. Minimality of X;. Let X; be as in §6.2. We prove
Proposition 6.3.1. X, is isomorphic to Hy . ® k.

For this, we recall the results of [9] and [10] on the optimal upper bound of the
last Newton slopes of (principally quasi-polarized) p-divisible groups with given
isomorphism type of p-kernel.

Let v be a final sequence of length h. We define

v {1,...,h} —— {1,...,h}
by sending i to v(i) if v(i) # 0 and v(h) + 1 if v(i) = 0. We get a non-empty subset

2= () Im ¥
j=1
of the set {1,...,h}. Set ¥ :=XN{1,2,...,v(h)}. Then we define
py = 1515, (6.5)

Theorem 6.3.2 ([9]). Let w € "W and let v be the (symmetric) final sequence 1.,
of w. Then the last slope of {(w) is equal to p,.

Next we recall an unpolarized analogue of Th.6.3.2. Let G, be a BT; over [,
with final sequence v.

Theorem 6.3.3 ([10], Cor. 1.3 and 5.4). (1) The optimal upper bound of the
last Newton slopes of p-divisible groups with given final sequence v is equal
to py.

(2) py =max{m/(m+n) | Hnn[plo = Gu.q for some alg. closed field Q2}.

Proof of Prop. 6.3.1. 1t suffices to prove that the final sequence of X{[p] is v 4. Let
v be the (symmetric) final sequence of X[p]. By the construction of X, the last
slope of &(w) is py, i.e., p, = ¢/(c+d). Let v be the final sequence of X?[p]. Since
Xilp] = Xlpl, i.e., Gurp = G, we have p,, < p, by Th.6.3.2 and Th.6.3.3
(2). By the construction of X7, the (last) Newton slope of X} is p,; hence we have
pv < pyr by Th.6.3.3 (1) for /. Thus p,» = p,. Then Th.6.3.3 (2) implies that
there exists an injection H. 4[plo < G, q for some Q = Q. Since H. 4[p] and G,
have the same rank (= ¢+ d), we obtain H,. 4[plqo ~ G,/ o, namely v.q =v'. O

7. THE SPACE OF HOMOMORPHISMS OF F-ZIPS

The aim of this section is to prove Prop. 7.6.1, where we construct a non-trivial
family of complexes of F-zips as in (6.3). For this, we start with describing the
space of homomorphisms between F-zips.

7.1. Slices and strings. It is known (see [26], §2 and also [20], §4) that every

homomorphism of F-zips can be described in terms of slices and strings. We write
here the definition of slices and strings by making use of final types.

Definition 7.1.1. Let By = (Bj,01) and By = (Bs,d2) be final types and set
m = 75, and Ty = 75, .
(1) A finite slice w is a subset of By x By of the form
w={(7i(s1),mh(s2)) | 1 <i <4} with |w| =¢ (7.1)
for s; € By and sy € By satisfying
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(a) (51(51) 1 and 52(32) = 07
(b) Jl(ﬂl(sl)) = 0a(mh(s2)) for all 1 <4 < £ and
(¢) d1(mi(s1)) = 0 and da(m5(s2)) = 1.
We denote by Qan = Qsn(B1, B2) the set of finite slices of B; and Bs.
(2) An infinite slice w is a subset of By x Bs of the form

w={(ni(s1),m(s2)) |1 <i <}  with |w]=2¢ (7.2)

for s; € By and sy € By satisfying

(a) sy = mi(s1) and so = m5(s2),

(b) 61(7i(s1)) = da(m(s2)) for all 1 < i < £.

We denote by Qoo = Qoo (B1, B2) the set of infinite slices of By and Bs.

Set Q = Q(Bl,Bg) = Qﬁn (] Qoo

To a slice w, we associate the subgroup scheme K, of the additive group G, over
IF,, defined by

K - G, if w € Qgn,
Y Ker(FI*l —id: G, = G,) if w € Qo

Let S be an F,-scheme. Let w = {(7}(s1),m4(s2)) |
|w] = ¢. For an element r € w, we denote by e(r) (

1 < i < ¢} be a slice with
0 < e < ¢ satisfying r = (wi“(sl) 751 (s2)). For a € K,
(S

i
€,(r)) the integer ¢ with
(S), we define a map

) (7.3)

Stwai By x B — K,
by sending r € w to a”™"” and r ¢ w to 0.

Lemma 7.1.2. Let w; and wo be elements of 7t WGth and ‘JQI/VGLh2 respectively.
Let Z1 and Zy be the split F-zips over ), of type w1 and wy respectively. Then
the functor, from the category of Fp-schemes to the category of sets, sending S to
Homg(Z1,5,Za,s) is represented by a scheme Hom(Zy, Z3) over Fy,, which has a
canonical commutative group scheme structure. Moreover there is an isomorphism
as group schemes over IFy:

o: PK, —— Hom(Z,Zy). (7.4)

weN
Proof. For * = 1,2, let B, be the final types of w,. We write B, = (B, )
with B, = {b{” < --- < b7}, Set m. = 75, and define @, (i) (1 < i < h.) by
Te(bi) = b, (). Also write Z = (N,,Cy, Dy, @s, o7 1) with N, = @iz"l ]prl( ) as

defined in § 4.1. Let S be any Fj-scheme. An Og-homomorphism p : Ny g — Na g,
say

= Zri’jbgg) with Tij € F(S, Os),

gives an element of Homg(Z1 g, Z2 5) if and only if

ri; =0 if (5(b£1 ) =1 and 5(b§2)) =0,
Tar(i)ma(iy) =0 if 5(bM) =0 and §(b%)) =1, (7.5)
Twl(i),wz(j) = sz lf Tl’j 75 0 and rwl(i),wQ(j) 75 0.
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Here note that the first equation is a paraphrase of u(C7) C Cs and the second is
a paraphrase of p(D1) C Ds, and the third is a paraphrase of o @ = ¢g 0 u®) or
popr = ¢ opu®. Clearly (7.5) is equivalent to that r; ; is of the form

Z Stw7a(bi7j)

weN
for a certain a € K, (S), where b; ; = (bgl), b§-2)) € By x Bas. O

Definition 7.1.3. We retain the notation of Lem. 7.1.2. Let pr, be the projection
DK, = K,. Let f: Z1s = Z3,s be a homomorphism of F-zips. For a slice w,
the element pr, o®~1(f) of G,(S) is called the string of f at w. An element of
{w € QB1,B) | pr,o® L(f) # 0} is said to be one of the slices defining f or
simply a slice defining f.
7.2. Duality. Let Z be an F-zip and let B = (B, ) be the final type of Z. Then
the final type of ZV (cf. §3.3) is canonically BY = (BY,48") (cf. §4.2).

Let Ny, Na, By and Bs be as in §7.1. Let w be a slice € Q(B,Bz). We define
wY € Q(BY,BY) by

w' = {(b¥7b\1/) l (b17b2) € w}‘

Let Z; and Z5 be as in Lem. 7.1.2. Clearly we have a commutative diagram:

@ ]Kw —_— @ KW v

weQ(B1,B2) wvVeQ(BY,BY)

l I

V: Hom(Zy,Z;) —— Hom(Zy,ZY),

where the vertical maps are obtained in Lem.7.1.2 and the top horizontal map
sends a € K, to a € K,,v. Here we note K, = K_v.

7.3. Top and bottom elements. As introduced in [20], 4.14, for a final type
B = (B, d) we define the set Top(B) of top elements and the set Bot(B) of bottom
elements by

Top(B) = {te B|d(n (1) =1, &(t) =0},

Bot(B) = {be B|d(x (b)) =0, §(b) =1}.
(See [14], 6.7 for a similar notion in the combinatorics of semi-modules.) Let B;
and Bz be final types. For any (t,b) € Top(B1) x Bot(Bz), we set wep := {(,b)}.
Then obviously we have we p € Qgn (B1, B2).

Let m,n be coprime non-negative integers and let B,, , = (B n,0m,n) be the
final type of the minimal BTy H,, ,[p]. If we write By, = {b1 < -+ < bimin},
then we have 0., ,(b;) = 1 for 1 < i <mn and §,, ,(b;) =0 for n <i < m+n (cf.
[11], §4.5). Let 7y, , be the automorphism of B,, ,, associated with 6,y ,. Then we
have the commutative diagram

By — Z/(m+n)Z
o | [+ (7.6)
By — Z/(m+n)Z,

where the horizontal maps send b; to the class of i — 1.
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Lemma 7.3.1. For anyl € Z>¢ we have

1 for [m"’"ﬂ <i < fmrj;”l 1
Om n( (bl)) {0 for I'm—i-nl + '| i< [%(l + 1)-‘

if m#0, and 6y (mh, ,(b1)) =1 for alli if m = 0.

(7.7)

Proof. Since 6p (7l ,(b1)) =1 & (m+n)l+1 < 14+mi < (m+n)l+n, we have
the lemma. 0

Corollary 7.3.2. If m > n, then 0, (s) = 1 implies 6y n(Tm.n(s)) = 0. If m < n,
then 0y n(s) = 0 implies O n(Tm.n(s)) = 1.

Lemma 7.3.3. Let (m,n) and (d, c) be pairs of coprime non-negative integers with
d/(c+d) <1/2<m/(m+n). Then we have

(1) Qoo(Bm,nyBae) =0,
(2) Qpin(Bins Bae) = {wie | (£,6) € Top(Bon.s) x Bot(Bgae)}

Proof. (1) Obvious. (2) Let 61 = §p,,n and 69 = 64, and set m = mp, , and m =
Td,c. Let w be any element of Qﬁn(an,Bd o). Write w = {(74(s1),75(s2)) | 1 <
i < (} asin (7.1). By definition we have §;(s1) = 1 and d2(s2) = 0. Then Cor. 7.3.2
says that 01(m1(s1)) = 0 and d3(m2(s2)) = 1. Thus ¢ = 1 has to hold, namely
w=wyp with t =71 (s1) and b = ma(s2). O

7.4. Remarks on endomorphisms of an F-zip. Let k be an algebraically closed
field. Let Z be an F-zip over k and let B = (B, d) be the final type related to Z.

Lemma 7.4.1. Let w € Q(B,B). Assume (b,b) € w for a certain b € B. Then w
s an infinite slice.

Proof. Let b be an element of B such that (b,b) € w. Then it is clear from the
definition of slices that (7%(b),7*(b)) € w for all i = 1,2,.... This means w €
0o (B, B). 0

Lemma 7.4.2. Letws,...,w, € Q(B,B) and let a; be a non-zero element of K, (k)
fori=1,....,n. We denote by f; the endomorphism Z — Z defined by (w;,a;).
Let w be a slice defining f1 0--- o f, (see Def.7.1.8). If w € Quo(B,B), then
w; € Qoo (B, B) for all1 <i< n.

Proof. Clearly K, contains K,,, --- K, (C G,); hence we have K, D K,,,. If w is
an infinite slice, then K, is ﬁnite hence K,,, is finite. This means that w; is an
infinite slice. 0

7.5. A self-dual complex of F-zips. Let
Z = (chvDa(PaQb) and Z; = (NlaclaDl’Spvabl)

be F-zips. Let u: Z — Z; be a homomorphism of F-zips. Write uy : N — N;
and let uo : C — C1 and pup : D — D; be the restrictions of uy to C' and D
respectively.

Definition 7.5.1. (1) A homomorphism p : Z — Z; is called strictly surjec-
tive if uy and pe are surjective.
(2) A homomorphism p : Z; — Z is called strictly injective if the dual pV
ZV — 7 is strictly surjective.
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Remark 7.5.2. Note that the surjectivity of py implies that pup and u(cp) are

surjective.

Lemma 7.5.3. Let u: Z — Z1 be a homomorphism of F-zips over S. The set of
points of S where p is strictly surjective (resp. strictly injective) is an open subset

of S.

Proof. Tt is enough to show the “strictly surjective” case. It suffices to show the
case that S is affine. Apply [19], Th.4.10 (i) to the cokernels of uxn and pc. O

For a strictly surjective homomorphism p : Z — 7, we set Ny = Ker(u : N —
Np) with Cp = Ker(p : C — C1) and Dy = Ker(p : D — D;). Then since
N7 and C; are locally free, there exist isomorphisms s : (Na/ Cg)(p) — Dy and
¥ Cép ) N5/ D5 commuting diagrams of Og-modules

0 —— (Ny/Co)®) ——— (N/CYP) ——— (N /C)®) ——— 0

o2 o|= e

0 —— Do —_ D —_ D; — 0
and
0 —— Cép) — P — C{”) — 0

¢2l2 QbJ/E ‘bllg
0 —— Ny/Dy —— N/D —— Ny/D; —— 0,

where the all horizontal complexes are exact. Thus we have an F-zip Zs =
(N3, Co, Do, s, 2), which is called the kernel of p, denoted by Ker(u). (If u is
not strictly surjective, we may not get an F-zip “Ker(u)”.) Similarly for a strictly
injective homomorphism v, we have its cokernel Coker(v) := Ker(v")".

Definition 7.5.4. Let Z be a polarized F-zip and Z; be an F-zip. A sequence of
homomorphisms of F-zips of the form

c: 0 zy Lz 7 0

is called a self-dual complex if
(1) fofY:Ny — Ny is zero,
(2) f is strictly surjective.

For a self-dual complex C* as above, we can define the first cohomology H*(C*)
by Coker(fY : ZY — Ker(f)). One can check that H'(C*) is a polarized F-zip.

7.6. Constructing a non-trivial family of self-dual complexes of F-zips.
Let k be an algebraically closed field of characteristic p. Let

Zy = (N1,C1, D1, 01, $1)
be an F-zip over k. Let By be the final type of Z; (cf. §4.1). Assume
QBY,B1) = {wip | t€ Top(By),b € Bot(By)}; (7.8)
for example Z1 = fz(Hgy[p]r) with ¢ > d, see Lem. 7.3.3.



20 S. HARASHITA

Proposition 7.6.1. Let Z be a polarized F-zip (N,C, D, p,,{ , )) with self-dual
complex of F-zips over k:

co: 0 zy ez Loy 0.
Assume C§ has no splitting. Then there exists a self-dual complex
co: o0 Zyg Lo zs L 215 —— 0

over S smooth of finite type over k of relative dimension > 1 with a section Spec k —
S such that
(1) C*®@k~Cg.
(2) C* is “non-trivial”, i.e., f¥ # Ko fov,s for any automorphism k of the
polarized F-zip Zg.

Proof. Let B, = (B, 0«) be the symmetric final type of Z, and set m, = ms_ for
x = (,1. Let {w;} be the set of the slices defining fy and let a; be the string
of fo at w; (see Def.7.1.3). By the assumption that C§ has no splitting, we have
w;i € Qsin(B, By). Note that ®~*(fy') is given by (a;) € @, Ky (k).

Write w; = {(7%(b;), 70(c;)) | 1 < v < I;} and put 5; = w(b;) and ¢; = 7' (b;). Let
pr denote the projection B x B; — B and prV denote the projection By x B — B.
First we prove

Claim 1. Every element of pr¥(w}) N pr(w;) is of the form: ¢} =s; or 5 = ¢;.

Proof of Claim 1: By the assumption (7.8), the composition Zy — Z — Z;
constructed by a; € ijv and a; € K, has to be defined by slices of the form wy
for some (t, b) € Top(By') x Bot(B1). Then any element of pr”(wy’) N pr(w;) should
be of the form: e;-/ =5, Oor 5JV =e;.

We say w; ~ wj if pr(w;) Npr(w;) # 0. Write U = {w;}/ ~. Let [w;] denote the
class of w;, i.e., [w;] = {wj|w; ~ w;}. For u € U, we define a subset of B by

B, = U pr(wi)§

wi;Eu
then we can write B, = {sy,7(s4), - , 74" (s,)} for a certain s, € B and d(u) €
Zso; we put e, := 7% (s,); for any w; € u, we define d; by
mi(su) =5 (0<d; <d(u)). (7.9)

Let P(a,b) be the property
Jw; € [wa], Jw; € [wp), e; € prv(w}/) N pr(w;).
Set Uy = {[wa] | 3b, P(a,b)} and U- = {[w] | Ja, P(a,b)}. Since for all a € Uy
there exists a unique b such that P(a,b) holds, and for all b € U_ there exists a
unique a such that P(a,b) holds, we have the bijection
vy: Up —— U_ (7.10)

sending [w,] to [wp] satisfying P(a,b).

Let w € Uy. If u # v(u) we have

BuNBj,y={eu=57u}  Byw NBy={er=s,w}

and otherwise

B, N B’\Y/(u) ={eu = 3,\:(“),67\: = Sy(u)}-
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Moreover for any (v,v’) € U xU we have B,NB,, = 0 if (v,v") # (u,v(u)), (y(u), )
for any uw € U,.

Consider the parameter space k[t,|u € U]. Write t = (¢,) and let f; be the
homomorphism Z — Z; obtained by (tf::]ai) € @, K., , see (7.9) for the definition
of d;. By the assumption (7.8), fi o f,’ is given by strings ¢ p(t) at w¢p’s. Thus
fto fY =0if and only if

cp(t) =0 forall t,b. (7.11)

Claim 2. The equations (7.11) in ¢ are linear in {tﬁd(u)

constant term.

Proof of Claim 2: For v € U, let f;, denote the (®wi€v ]Kwi)—part of f;; then we
can write fy = 3 fi.,. Note that ¢ p(t) is the sum of wy p-coeflicients of f;, o fth,
for (i) (v,v") = (u,v(w)) and (i) (v,v") = (y(u),u) with v € U;. The both
contributions of f; ., o £,/ at (i) e, = sY,) and at (i) e} = s, are of the same

ty(u) uer, without any

form: const - tﬁd(")tv(u). Thus we have Claim 2.

Let « be a new parameter. Put R = k[z,1/z] if Uy # 0 and R = k if U; = 0.
Since t,, = 1 is a solution of (7.11), any solution of {tﬁd(u)tﬁy(u) = T}luev, gives a
solution of (7.11) by Claim 2. We put

S":=SpecRIt, | u e U]/(tﬁd(")tv(u) =z |luelUy)

and take as S the open part of S’ where f; is strictly surjective (see Lem. 7.5.3).
Of course the required section Speck — S is defined by sending = and t, to 1.

It remains to show that S is smooth over k of relative dimension > 1. It suffices
to show S’ is smooth over k[x,1/z] in the case that Uy # (. We can decompose
U, as

Uy = |_| {ur, y(w), .M (w) }
!

such that (A) v € U_ and v™(u;) € Uy or (B) v™(w;) = w;. Since a fiber
product of smooth morphisms is smooth (cf. [8], 17.3.3), it suffices to consider the
simultaneous equations tﬁd(u)tv(u) =z for u € {uy,y(wr),...,y™(w;)} for each .
Note that t.i(,,) for i > 1 is uniquely determined by = and ¢,,. Case (A): We have
no equation in t,,. Case (B): Put r; = Z;”::l d(v*(uy)) for 0 < i < my with r,,, = 0.
We have a unique equation in ¢,,:

PO _ ST (-
uy ‘

This is an étale equation outside x = 0.

Finally let us show that C® satisfies the property (2). First note that the set of
slices defining fV is the same as the set of slices defining f/. Assume an element x of
Aut(Zs) satisfied f¥ = ko fy. Let B = {b € Bot(B) | Jw;, " € Bot(BY), (V',b) €
w;'}. Tt follows from the construction of f that for any b € 9B there exists a “moving”
slice w’ defining & such that b4 € B, (b4,b) € w’, where we say w’ is moving if the
image of the string Spec(S) — G, of k at w’ (Def. 7.1.3) is positive dimensional. In
this case we write w’ : by — b. Then there exists at least one “cycle”:

! ’
Wi wo

by = by N1y ... by by bo,

where b; are some elements of B for 0 < ¢ < N and w] are some moving slices
defining x with (b;11,b;) € w} for 0 < i < N. Then by Lem. 7.4.1 and 7.4.2, w} has
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to be an infinite slice. On the other hand if w; is moving, then w] has to be a finite
slice. This is a contradiction. (]

8. A LIFTING TO A SELF-DUAL COMPLEX OF DISPLAYS

The purpose of this section is to prove Prop. 8.3.1, where we construct a lifting
of a family of self-dual complexes of F-zips (e.g., C constructed in Prop.7.6.1) to
a family of self-dual complexes of displays. For the construction we need to solve
some equations in Witt vectors. Hence we start with preparing some lemmas to
solve such equations.

8.1. Lemmas. Let A be a commutative ring of characteristic p.
Lemma 8.1.1. Let A" = Alzo,...,z,]. Write x = (x0,...,2,) € Wy(A). For

a = (ao,...,an) and b € W, (A) and for ¢ € Z>q, the equation a -7 x —x = b in
Win(A') is described as simultaneous equations in A’ of the form

af a?" — ;= Py(zo,...,xi-1)  (0<i<n)
for some P; € Azg, ..., x;—1].
Proof. Let R = Z[Xo,...,Xn,Y0,...,Y,] be the ring of polynomials in 2(n + 1)
variables. Let X = (Xo,...,Xp) € Wo(R) and Y = (Yp,...,Y,) € W,(R). Since

the i-th entry of X +Y € W, (R) is written as 0;(Xo,...,X;; Yo,...,Y;) for some
polynomial o; with coefficients in Z, we have

X e p X+ Y 40" = 00(Xos Yo)! 44 pi0i(Xos ., Xy Yo, .., V).
Hence 0;(Xo, ..., X;; Yo,...,Y;) has to be of the form
Xi+Yi+Qi(Xo, ..., Xi1,Y,...,Yi 1)

for a certain polynomial @); with coefficients in Z.

The i-th entry of XY is written as m;(Xo, ..., X;; Yo, ..., Y;) for some polynomial
m; with coefficients in Z. We have
(XP 4 +p X)) (Y - 4p'Y5) = mo(Xo: Vo) 4+ 4p'mi(Xo, ..., Xi3 Yo,..., V).
Since the characteristic of A is p, the z;-coefficient of m;(zo, ..., zi; Yo, .., yi) is ygi
for the elements (zo,...,2,) and (yo,...,yn) of Wy (A"). O

Lemma 8.1.2. Let I' be a finite set. Let v : T — T" be a map. Let ¢; € Z~q and
a0 € W, (A) fori € T. There exists a finite A-algebra R such that Spec(R) —
Spec(A) is surjective and there exists a solution (x) (i € T, () € W, (R)) of the
simultaneous equations

20 0% (@) _ ) _ () (8.1)
Proof. Let I'" = (N, .y Im~". Then v induces a bijective map v : I'" — I''. Then I”
is divided into y-cycles. Let J be a v-cycle in T”. First we solve the equations (8.1)
only for i € J. Let jo € J and set j, =" (jo). Write & = 2U) and put a, = alir)
and 8, = bUr) and o, = o%r. Then our equations are written as

Qp - <TT§T+1 - €r = Br- (82)
For 0 < r < |J| we put

r—1 r—1
pr = H o; and A, = H Ploy (8.3)
=0 =0
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with pg =1 and Ay = 1, and for 0 < r < |J| we set

B.=A, 5,. (8.4)
Then we have A,y - Pr+1&.41 — A, - Pr€,. = B,; hence
Ay P18 — & = Z B,. (85)
0<r<|J|

By Lem.8.1.1, there is a finite A-algebra R’ such that Spec(R’) — Spec(A) is
surjective and we have a solution & € W, (R’) of (8.5). From (8.2) we can find a
finite A-algebra R” with surjective Spec(R"”) — Spec(A) such that the remaining
& are in W, (R"). Doing the same thing for the other v-cycles in IV successively,
we get a finite A-algebra R with surjective Spec(R) — Spec(A) such that we have
a solution (V) of the equations (8.1) for i € T".

For i € T'\ I, there is a unique sequence (i,7(i),...,7'(i)) satisfying /(i) € T
and 7" (i) € T” for r < I. By the descending induction on r, we obtain a solution
(") of (8.1). 0

Remark 8.1.3. Lem.8.1.2 holds also for ¢; € Z>¢ if for every ~v-cycle J in I'
satisfying p| s = id, there exists a solution of (8.5): (4|7 — 1)§0 = X o<, <)y Br-
Let Wo(A) = W(A) ®7z Q. Note that Wg(A) = h_r)nW(A) ®z, (1/p")ZLyp.

Corollary 8.1.4. Assume A is of finite type over a perfect field k. Let n be a
non-negative integer. Let I' be a finite set with a map v:1T' = T'. Let ¢; € Z~q and
a® bW € Wo(A) fori € T'. There exists a finite A-algebra R’ such that Spec(R') —
Spec(A) is surjective and there exists a solution (@) (i € T, ) € Wo(R")/Ir.n)
of the simultaneous equations

al® . 7% (@) _ g () = p@) (mod Igs p). (8.6)

Proof. Let m be a non-negative integer such that a9, b() € W(A) ®z, (1/p™)Z,
for all i € I'. Let R be the finite A-algebra obtained in Lem. 8.1.2 for p™a®, p"b(%)
modulo IR ,4r; then there exist y(i) € W(R) for i € T such that

pral® . 7y (@) (0 = prp) (mod I min)- (8.7)
Note that R is of finite type over k. There exists a finite R-algebra R’ such that
(R?" = R and Spec(R') — Spec(R) is surjective. Then we have Ip ,in =
p™ IR n; hence () = (p~™y?) is a solution of (8.6). O

Remark 8.1.5. Cor.8.1.4 holds even for ¢; € Z> if there exists a finite A-algebra
R" with surjective Spec(R") — Spec A such that there is a solution of (8.6) for
i €I"=[),cyIm~". See the last paragraph in the proof of Lem.8.1.2.

8.2. Minimal displays. Let ¢ be a Newton polygon without the étale segment
(0,1) . We denote by M (£) the display over F,, of the minimal p-divisible group H (§)
(85.1). Write M (&) = (P(£),Q(€),F,V~1). Remark that P(£) here is canonically
identified with that at (5.3).

For later use, we need to describe M (&) explicitly for the cases £ = (d,¢) and
(¢,d) for ged(c,d) = 1 and ¢ > d > 0. We write M. q = M((¢,d)) and P.q =
P((c,d)), etc. First we introduce a “good” basis of P, 4 and a normal decomposition
Pog=Lcqg®T,q, which defines Qc,d =Lcqg® I]FpTc,d- Let {60, ey ec+d_1} be a
minimal basis of P, 4 (see §5.1). Let a(e;) denote the largest integer o such that
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i+ ad < ¢+ d, namely a(e;) = [(c+ d —i)/d]. Note that a(e;) > 1 for all i < c.
We set xg = eg and define inductively z; (i € N) by

Tigy =V I FYg,; with ;= a(x;).

Note that &g = z; and {z; | i € Z/dZ} = {eo, ..., eq—1}; then we have |a; — ;| <
1 for all ¢,j € Z/dZ. Clearly M, 4 is given by

Pc,d: @ éZP}*xi

i€Z/dZ s=0

with normal decomposition P, 4 = L¢,q ® T¢ q defined by

Ozifl
Lea= P Z,F%x;  and  Toa= @ P z,F .
i€Z/dZ i€Z/dZ s=0
Similarly Mg . is given by
Pie= B DYy
i€7,/dZ s=0
with normal decomposition Py, = Lg,c @ Ty, defined by
a;—1
Lic= @ PzVyvry, and Tic= P 7,V "y
i€Z/dZ s=0 i€Z/dZ

We define an alternating bilinear form (, ) on P, 4@ Py by (Pe,q, Pe,q) = 0 and
(Pd,m dec) = 0, and
(.kai, V_lyj) = 5ij5kl-
Clearly (, ) gives a principal quasi-polarization on M. 4 ® M.

8.3. Construction of a lifting of a self-dual complex of F-zips. Let £ =
thzl(ml,m) be a symmetric Newton polygon with A\; < --- < Ay, where \; =
my/(m; +mny). Put £ = Z;:;(ml,nl) and set (d,c¢) := (my,n1). We assume
c>d > 0. Let Mc,d = (Pc,daQC,dv-F7 Vﬁl) and Md,c = (Pd’C,Qd’C,J:,Vil) be
the minimal displays, which were explicitly described in the previous subsection;
hence we will freely use the notation in §8.2. Let A be a commutative ring of
finite type over a perfect field k. Put M; = (My,.)a and set Z; = My /Iy M;y; then
7Y = M}/IAM} with M} = (M. g4)a. For any display (P,Q,F, V1) over A, let
~ denote the natural projection P — P/I\P. Let Z = (N,C,D,¢,¢,{ , }) be
a polarized F-zip over A and f be a strictly surjective homomorphism Z — Z;
making a self-dual complex

c: o0 zv Az g 0. (8.8)

The following is a key proposition in this paper, where for any lifting of H*(C*) to a
display we construct a lifting of C* to a self-dual complex of displays. The original
idea of the construction is found in [17], §7.

Proposition 8.3.1. Let M’ be any principally quasi-polarized display over A with
M'/IN\M' ~ HY(C*). Let {, ) be a quasi-polarization on the minimal display
M(&"). Assume we are given an isogeny

(M(€),(, )y —2— M’ (8.9)
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as quasi-polarized displays. Then for a finite surjective morphism Spec(R) —
Spec(A), there exist a principally quasi-polarized display M over R with an isogeny
of quasi-polarized displays

(M(&),(, N)r —E— M (8.10)
for a certain polarization ( , ) on M(§) and an isomorphism k : M/IgM — Zg
and a surjective homomorphism ¢ : M — My making a self-dual complex

¢t

D 0 —— Mg M —2 s Mg —— 0

such that
(1) HY(D*) ~ Mg,
(2) we have a commutative diagram

t
+ [
Mip —

\\ s

(Mea)p —=— M()r
(3) we have a commutative diagram

—e =t s
D0 —— Mlp/IgMly —2— M/IgM —2— My g/IgMi g — 0

|- | -
Chi0 —— 2z, Iz I oz, —
Moreover, assume that with respect to a section Spec(k) — Spec(A)
(i) we can write Z and M’ as Z,, @ A and M}, ® A respectively,
(il) p’ is a trivial family,
(iii) C* is non-trivial (see Prop.7.6.1, (2) for the definition);
then p is a non-trivial family.

Proof. We are given a complex

c: 0 N LN LN 0 (8.11)
and H'(C*) ~ N’. A technical lemma (Lem.8.3.2 below) shows that for a finite
surjective morphism Spec(A’) — Spec(A), there exists a lift v; s € Np» of V™5y;
(i € Z)dZ,0 < s < ;) such that T; s € Cas (s < ;) and p~ (U 541) = 1 @7, 5 for
0<s<aqa and

(Tiys Vi) =0 (8.12)
for all i,9' € Z/dZ and for all 0 < s < a; and 0 < ¢ < ay. We replace A
by A’. For any Z € N’, let u(Z) be an element of Ker f uniquely determined by
(u(z) mod NY) = z and
(u(z),v;5) =0 for VieZ/dZ, 0<Vs<a;. (8.13)
Thus we have generators of N:
s (1<i<d0<s<q), uz ((ZeN), Fua (1<i<d0<s<w).
We define z; € N’ (i € Z/dZ) by
Zi=p(1®D;_ 14, ,) —Vio mod Ny; (8.14)
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then we can write
a
CL@Ti—10,,) —Tio =UZ)+ Y Y dijFoa;,
JEZ/AZ s=0
for some d; j s € A. By (8.12) and (8.13), we have d; j s = (P(1 @ Vi—1,0; ,)sVj.s)-
If s > 0, then we have
dijs ={(1@Ti1,0,_,), ¢ @) = (1@ Ti-1,0,_,), 1@ Tj5-1))P = 0.
Put 31-,]- = gi,j,O; namely
dij = (p(1 ®Ti_1,0,_,):Tj0)- (8.15)

Note that all relations involved with {v; s} are generated by ¢! (V; s41) = 1 @ U;
for 0 < s < «; and the relations of the form

P @Ti1,0,,) = Vi =U(EZ) + > diT;. (8.16)
JEL)dZ

For later use, we show

where the pairing on the second term is on N’. Indeed
Eivj = <90(1 ® Eifl,aifl)’ﬁj’(» = EJ}Z— - <90(1 ® ii*176¥«;71)7ﬂ(2]‘)>' (818)

By (8.14), (8.13) and the fact (NY',u(z;)) = 0, this is equal to d;; — (Zi,u(Z;)),
which is also equal to d;; — (z;,%;), since (z;, NYY) = 0.

Let R be a “sufficient large” A-algebra determined later. We define a projective
Wo(R)-module

Pr=P)r®Q  with P()=P.s® P(&)® Py..

Note that Pr is equipped with an alternating form (, ) induced by (, ) on P, ¢® Py .
and (, ) on P(¢'). We also have Wg(R)-linear homomorphisms F : P, — Pr and
V=1 Pg — Pr with PE = Wo(R) @0, wy(r) Pr- Put

Fx):=F1®x*) and Vi) :=V'11®x), (8.19)

and for s € N we inductively define F*(x) and V =%(x) by F*(x) = F(1 ® F¥1(x))
and V=2 (¥) = V™11 ® V=71 (%)) respectively. We write

t
Pr=EPPY  with PY =P .u.r®Q
=1

and set
t—1
l
P = (PPY.
1=2
For 2 <1 < t—1, let eél)w..,ef,ll)ﬁnlfl be a minimal basis of P, »,. Write

M = (P,Q,F, V=t (,)). Note that P is in Pg.
Let us define a principally quasi-polarized display M = (P, Q, F, V=1 (,)). We
will define P to be a submodule of Py generated by P, 4 and some elements
V=sv; € P (I1<i<dand0<s<q),
u(z) € P%) eP, (ze€P)
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of the form v; = yi+z;=2 AZ(-” with Al(.l) € ]P’%) and u(z) = z+B(z) with B(z) € IP’S;),
where Agl) and B(z) will be chosen later such that M has the required properties.

Let z; € P’ (i € Z/dZ) be alift of Z; defined in (8.14) and we write z; = lt;; zi(l)
with z{! € ]P’%). Put v} = y; + >, APV Write

%

m;+n;—1
Agl) = Z az(.;)egl), az(»;) € Wo(R) for 2<l<t
5=0

We define ag») (1€Z/dZ,0<j<m+mn;,2<Il<t) as satisfying

{FV‘O‘i—lvgl —vl =z for 1 <i<d, (8.20)

FV-ta-yl | —vi=2¢ (modIpnP(&)r)

for a sufficient large n € N (OK. if n > o for all i € Z/dZ). Setting

Uji = (FVZ071) - (FVZ)(FV =) (0<d < j < d),

we obtain the equation

d
UaoAL — AY =3 Ugiz!  (mod IpuPryni.R)- (8.21)

i=1

Comparing the ey)—coeﬁicients of the both sides of (8.21) for each 0 < j < my; + ny,
we have simultaneous equations as in Cor. 8.1.4. Hence we can choose a finite A-
algebra R with surjection Spec(R) — Spec(A) such that there is a solution {a(()lj)}

(2<1<t-—1)of (8.21). We define al(é) € Wo(R) for i > 0 by

(3
/ pyp— . / P . . -
v; = U; ovg g Ui jzj.
Jj=1

Then v} (¢ € Z/dZ) satisfy (8.20).
We determine B(z) uniquely by the equations:
(u(z),V=°v}) =0 (8.22)
fori € Z/dZ and 0 < s < q;. B
For each 0 < i < j < d, we choose a lift d; ; € W(A) of d; j and for 0 < j <i < d
we set
dij = dji — (i, 25), (8.23)
where the pairing of the second term is on P’. By (8.17) we see that d; ; are lifts
of d; j even for 0 < j <i <d.
We define Agt) for every i € Z/dZ as satisfying the equations:
(A) (vi, V™o0,) 0 (modlIg,) for 4,j€Z/dZ, 0<s<a,
(B) (FV~%-1v;_q,v;) d;; (modIp,) for 0<i<j<d.
Before solving this collection of equations, we give some remarks. First from (A)
and (3.5) we have

(V=50 V""0;) =0 (mod Ig) (8.24)

for i, € Z/dZ, 0 < s < a; 0 < ¢’ < ar. Secondly we claim that (A) and (B)
imply

(FV~=%-ty;,_q,vj) =d;; (modIg) for all 4,j € Z/dZ. (8.25)
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Indeed by (A) and (8.22) we have
vaou;fl’ui_l —U; = U(ZIL) + Z d;vjxj (IIlOd IR,nP(g))

jEL)dT.
with d; ; == (FV~%-1v;_1,v;). It suffices to show d; ; = dj; — (zi,2;) (modIg).
By (3.5), (8.20) and (8.22) we have
di; = (FV- %, FV™% 05 1 —u(z;) — Z d; yx) (mod IR .)

ke€Z/dZ
= dj, — (FV™ % 1,u(z)) = d;,; — (2i,2;) (modIg).
Write
A = Z §ij,sF Tje
JEZ/AL,0<s<a;
Let us rewrite (A) and (B) by using {&; ;s}. Since Véz; = V71 F%-1g, 4 =
psTlF¥i-1=stly, | for s > 1, (A) is translated as

pe® 'Jsfw(i,j,s) —&ijs = Bijs (mod Ig n), (8.26)

where v(i,j,8) = (j,i — 1,a;—1 — s+ 1) and e(s) =1 — s for s > 1 and ~(7,4,0) =
(4,1,0) and e(0) = 0, and B; ;¢ is a constant (v, — y;,7 (v; — y;)). Note that
Bij0 + Biio = 0.

Since Fﬁlvo‘iflxj is equal to pa“l’lf"ifl’afflxj,l if ;-1 < a;—1 and to
pri—1T2F%—2g; 5 if a1 > aj_; (here we used |aj_1—a;_1| < 1), (B) is translated
as

Voo ;141

p6 (]az70) .o ! 5,),/(%1-70) — §j,i,0 = /B,Z’j (mod IR,n) (827)
with a constant 3; ; (determined by d; ; and Ag,l)’s), where +/(4,7,0) = (1 — 1,5 —
1,51 — a;—1) and €'(4,4,0) = —(a;—1 — 1) for a;—1 < aj_1, and 7/(4,4,0) =
(t—1,j —2,05-9) and €'(4,4,0) = —(a;—1 — 2) for ;1 > a;_1. By applying

Cor.8.1.4 to (8.26) for 0 < i,j <dand s >0and for 0 < i< j<dand s =0
and (8.27) for 0 < ¢ < j < d, we can choose R with finite surjective morphism
Spec(R) — Spec(A) such that there exists a solution of the simultaneous equations.
Now we have finished defining P.

In order to define Q, it suffices to define a normal decomposition P = L & T
then @ = L ® IgT. Let P’ = L' & T’ be a normal decomposition of P’. We define
L to be the submodule of P generated by L. 4, u(z) (z € L), Vv; (0 < s < o)
and T to be the submodule of P generated by T, 4, u(z) (z € T"), V" %uv,. We
have to show that (P, Q,F, V=1 (, )|p) is a principally quasi-polarized display. It
suffices to check that

(a) V7! induces a well-defined surjective map V=1 : Q7 — P and

(b) (, )|p is a perfect pairing on P.
(b) follows immediately from (8.22) and (8.24). (a) In order to show that V=1 :
Q7 — P is well-defined, it suffices to show that the elements V ~1u(z) (2 € L’) and
V=1 u(2)) (2 € P') of Pg are in P. For V~lu(z) (2 € L), it is enough to show
that

V'u(z) —u(V7'2) =0 (modP. 4 r) for zelL. (8.28)

This is equivalent to (V~"'u(z) — u(V~'2),V=*v}) € W(R). Since

(V7 u(z) —u(V12), VTiug) = (V= lu(z), V=g,
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it suffices to check that
(V7 'u(z), Vo)) € W(R). (8.29)
For s > 0, (8.29) follows from
T -1 —s —s5+1
(V7 hu(z), V=oug) = (u(z),V + v5) = 0.
For s = 0, from (8.20) we have
(V7 u(z), V=oulh) = (VT u(z), FV =% ) _1)  (mod W(R)) (8.30)

and the RHS of (8.30) is equal to 7 (u(z), V~%-1v;_;) = 0. Hence (8.29) holds also
for s = 0. Similarly one can show that V~1("1-u(z)) = Fu(z) is in P for all z € P’
by checking

Fu(z) —u(Fz) =0 (modP.q4r) (8.31)
in the same way as the proof of (8.28). Thus V=1 : Q7 — P is well-defined. Since
clearly V=1 : Q7 — P is surjective, we obtain (a).

Let us see that M = (P, Q, F, V=1 (| )) satisfies the required properties. The
condition (2) is obviously fulfilled. We define the homomorphism P — M; by
sending V%v; to V" *y; and u(z) (z € P’) and F®z; to 0, and the homomorphism
E: P — N by sending V~°v; to 7, s and u(z) to w(z) and F®z; to Fsz;. Then
H(D*) is generated by u(z) (z € P'); by (8.28) and (8.31) the homomorphism
HY(D*) — M}, sending u(z) to z is an isomorphism, i.e., we obtain (1). Next let us
show that x is an isomorphism. This follows from the construction of M; indeed
compare (8.16)&(8.20) and (8.13)&(8.22) and (8.12)&(8.24) and (8.15)&(8.25) re-
spectively, and note that these equations determine the isomorphism classes of Zp
and M /IgrM respectively. The last property (3) is obviously satisfied.

Finally let us show the last assertion. We assume that p : M(§)g — M is
trivial and show that C* is trivial. By the assumption we can write p = pg g, where
po = pr : M (&) — M with M := My, and M = Mpr. Write ¢g9 = ¢ and fo = f,
and ko = k. By the property (2), we have ¢! = ¢67R. According to (3), we obtain
Y =Fo fyp with &k = ko Kja’}% € Aut(Zg). Then by definition C* is trivial (see
Prop.7.6.1, (2)). O

Lemma 8.3.2. There exist a finite surjective morphism Spec(R) — Spec(A) and
elements U; s of Np (i € Z/dZ,0<s<o;) withv;s € Cr (i € Z/dZ, 0 < s < ;)
such that f(v;s) = V=5y; and $p (U 541) = 1 @V, 5 and (V; s,V ) = 0 for all
i,i' € Z/dZ and for all0 < s < a; and 0 < 8’ < ar.

max; {a;}

Proof. There exists a finite A-algebra A’ such that (A’)? = A. It is possible
to choose elements ¥j , of Nps such that f(v] ;) = V=5y; and ¢~ (7 . ;) = 1®7j .
Over an A’-algebra R’ determined later, we will find 7; 4 of the form

— k—
Vi o, T E E ai k- Ty for s =ay,
J€Z/d7 0<k<a;
=5 — ) = P
Viss = § Via—1 + g bij ¢ T for s = a; — 1,
JEL/AZ

—
Ui,s

for s < a; — 1,
where a; ; and b; ; are elements of R’ with

bp i = a4.4,0- (832)

2,7
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These 7;  satisfy the two properties f(7; ) = V~=y; and ¢ (U; 541) = 1 @ U 5.

Using gb’lfj = % -1T;_1, the condition (T;s,7jq,;) = 0 is written as
1 T o
aj,i,a.b a; \J,a < z ;) j aJ> for s = Qs
Qj,i,ai—1 — 1]+ < Via;—1:Y J aj > for s = a; — 1, (833)
Qjis = (Vi 5, U, ) for s < a; — 1.

Thus using (8.32) we regard (8.33) as simultaneous equations in a; ; s (4,5 € Z/dZ,
0 <s <) and b;; (i,j € Z/dZ). By Lem.8.1.2 and Rem.8.1.3 there exists
R’ with finite surjective morphism Spec(R’) — Spec(A’) such that there exists a
solution of the simultaneous equations. Finally we can choose R’-algebra R with
finite surjective morphism Spec(R) — Spec(R’) such that 7, , € Cr (i € Z/dZ,
0<s<a;). Then for 0 < s < a; and 0 < s’ < a;» we have (T; 5,y o) = 0. O

Here is a corollary to Prop. 8.3.1.

Corollary 8.3.3. Let C* be as in (8.8). Assume A = k. Let w be the final element
related to Z and let w' be the final element related to H'(C*). Then we have

(d; ) + &(w') + (¢, d) < §(w).

Proof. Let M’ be a principally quasi-polarized display with Newton polygon &(w’).
Apply Prop.8.3.1 to this M’, we obtain a principally quasi-polarized display M
with Newton polygon (d,c) + £(w’) + (¢,d). By the definition of &(w), we have

(d; 0) +&(w') + (¢, d) < &(w). 0
8.4. Proof of Th.6.1.1. We use the notation of §6.2. Let
ci: 0 zy sz Sz 0

be as in (6.2). Put Z, = H'(C3), which is a polarized F-zip. Let w}, be the final
element of Z). Then

Lemma 8.4.1. (d,c) + &(wp) + (¢,d) = &(w).

Proof. By Cor. 8.3.3, we have (d, ¢) +&(w)) + (¢, d) < &(w). Let X’ be the H! of the
complex (6.1). Clearly Fz(X') = Z|. By the definition of £(wj), we have N (X’) <
&(wg). Hence &(w) = N(X) = (d,¢) + N(X') + (e, d) < (d,c) + E(wh) + (e, d). O

We say C§ splits if there exists a splitting go of fo so that gy and gy make an
isomorphism between Z and Z\ @ Z| & Z; as polarized F-zips. If (¢,d) = (1,0),
then C§ splits. Hence in the non-split case, we have d > 0.

We show Th.6.1.1 by induction on g. The proof is divided into three cases.

Split case: Assume that C§ splits. Let w; be the final element of X;[p] x X{[p]
and let w{ be the final element of Z{[p]. Recall the assumptions: w is not minimal
and C§ splits. Then wj is not minimal, since w; is minimal (Prop.6.3.1). Then
by the hypothesis of the induction (i.e., Th.6.1.1 for the lower dimensional case),
there exists a non-trivial isogeny

HE(w))) xS —— &/

over S of finite type over k with dim S > 0 satisfying the three properties in Th. 6.1.1
for a certain section Spec(k) — S. Since {(w) = &(wy) + &(w]) (Lem.8.4.1), the
principally quasi-polarized p-divisible group X := X f s® X' @ X, g over S satisfies
the properties in Th.6.1.1.
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Non-split case (I): Assume that C§ does not split and that Zj is not minimal.
By the hypothesis of induction (i.e., Th.6.1.1 for the lower dimensional case), there
exists a non-trivial family of isogenies

t—1

P Hum @R —— X

1=2
over R’ such that Fz(X’) ~ Z,, @ R". Then by Prop.8.3.1 there exists a non-trivial
family of self-dual complexes

0 Xt X X, 0

over R of finite type over k with surjection Spec(R) — Spec(R’) and a non-trivial
family of isogenies

t
P Hnm R —— X
=1

such that Fz(X) ~ Z,, ® R.

Non-split case (II): Assume that C§ does not split and that Z{ is minimal.
Set wy = £(Z]). Then wy is the minimal final element of Newton polygon & =
Zl:; (my,n;). By Prop.7.6.1 we have a non-trivial family over a ring R’ of finite
type over k:

f\/

C: 0 —— ZYn Zp —L s Zip —— 0

such that C* ® k = C§. If necessary, we shrink R’ so that R’ will be irreducible
of dimension > 0 and {E(H(C*),)|s € Spec R’} will consist of at most two final
elements, say wy(, at a special point and w’ at the generic point.

Case w’ = w{: In this case for a faithfully flat finite extension R’ — R’ we
have H(C*) ® R” ~ Fz(H(¢')) @ R" (see [21], Cor. 5.4). Set X' = H(¢')® R”. By
Prop. 8.3.1, there exists a non-trivial family over R of finite type over k with some
surjection Spec(R) — Spec(R"):

D: 0 Xt X X1 0
(satisfying H'(D*) = X') with non-trivial family of isogenies

t
PHnm @R —— X
=1

such that Fz(X) ~ Zg.

Case w' # w: First we prove

Lemma 8.4.2. &(w}) = &(w').

Proof. By [27], (4.11) we have &(w() < &(w’). On the other hand, since (d,c) +
E(w') + (¢,d) < &(w) by Cor.8.3.3 and (d, c) + &(w]) + (¢,d) = {(w) by Lem. 8.4.1,
we have (w') < £(wy). O

This lemma and w’ # w{ imply that w’ is not minimal. Take a point 2’ €
(We(w)y NS ) (k) and let A" be the associated principally polarized abelian variety.
Put Y’ = A’'[p*]. Applying Prop.8.3.1 to C* ®g k' for an algebraically closed field
k' containing R’, there exists a self-dual complex over k’

0 —— Xi, Y Xip —— 0 (8.34)
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with M (Y) = £(w) and £(Fz(Y)) = w such that the first cohomology of (8.34) is
Y/,. Replacing X by Y, we can reduce to the non-split case (I).
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