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Abstract

This paper concerns the classification of isogeny classes of p-divisible
groups with saturated Newton polygons. Let S be a normal noetherian
scheme in positive characteristic p with a prime Weil divisor D. Let X be
a p-divisible group over S whose geometric fibers over S\D (resp. over D)
have the same Newton polygon. Assume that the Newton polygon of XD

is saturated in that of XS\D. Our main result (Corollary 1.1) says that X
is isogenous to a p-divisible group over S whose geometric fibers are all
minimal. As an application, we give a geometric proof of the unpolarized
analogue of Oort’s conjecture [11, 6.9].

1. Introduction

Let S be a scheme in positive characteristic p. A p-divisible group over S is
called NP-constant if all its geometric fibers have the same Newton polygon.
In [19] Zink proved that if S is regular, then any NP-constant p-divisible group
over S is isogenous to a p-divisible group which has a slope filtration. The case
that S is finitely generated over a perfect field with dim(S) = 1 had already
been shown by Katz [7, Corollary 2.6.3]. The result of Oort and Zink [15,
Theorem 2.1] is quite general, where they showed that the same statement
holds even when S is a normal noetherian scheme.

The aim of this paper is to weaken the NP-constancy condition. Since
the condition on slope filtration makes sense only for NP-constant p-divisible
groups, we instead use the condition that all geometric fibers are minimal.
The definition of minimality of [10, 1.1] is recalled in Definition 3.4. Note that
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any NP-constant p-divisible group whose geometric fibers are all minimal has
a slope filtration.

Let S be a scheme in characteristic p > 0, and let D be a closed subscheme
on S. An NP-saturated p-divisible group over (S,D) is a p-divisible group X
over S such that XS\D and XD are NP-constant and the Newton polygon of
XD is saturated in that of XS\D. Here for two Newton polygons ξ, ζ where ζ is
less than ξ, we say that ζ is saturated in ξ if there is no other Newton polygon
between ζ and ξ. As a corollary of our main theorem (Theorem 4.2), we have

Corollary 1.1. Assume that S is noetherian and normal and that D is a
prime Weil divisor. Then any NP-saturated p-divisible group over (S,D) is
isogenous to a p-divisible group over S whose geometric fibers are all minimal.

This means that in order to classify up to isogeny, NP-saturated p-divisible
groups over (S,D) as in Corollary 1.1, it suffices to look into NP-saturated p-
divisible groups whose geometric fibers are all minimal. Such p-divisible groups
are very specific, which can be said to be concrete objects in the deformation
theory at least for local S, since the isomorphism class of every geometric fiber
is determined.

This paper is organized as follows. In Section 2 we introduce the notion
of quasi-saturated Newton polygons. The above corollary will be regarded as
a special case of more general result on NP-quasi-saturated p-divisible groups.
In Section 3 we investigate the relation between the slope-divisibility and the
minimality of p-divisible groups, and introduce an isogeny θµ : X → Ψµ(X) in
(18) and show some nice properties of the isogeny, which will be used in the
next section. The former part of Section 4 is the heart of this paper, where
we shall prove the theorem in the case of S = Spec(R) with discrete valuation
ring R. In the latter part we shall extend it to general (S,D) as in Corollary
1.1, using the ideas invented by [15]. In Section 5, as an application, we give
a geometrical proof of the unpolarized analogue of [2, Corollary 3.2] on the
configuration of the minimal p-kernel type, and show the unpolarized analogue
of Oort’s conjecture.
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2. Quasi-saturated Newton polygons

A Newton polygon is a finite multiset of coprime pairs of non-negative integers

{(m1, n1), . . . , (mt, nt)}, (1)

i.e., a function from the set of coprime pairs of non-negative integers to the set
of non-negative integers with finite support. We define the addition of Newton
polygons to be the addition of their functions, which will be denoted by +NP

so that we distinguish this from addition of two-dimensional vectors.
We regard Newton polygons as upward-convex line graphs defined in the

following way. Let ξ = {(m1, n1), . . . , (mt, nt)} be a Newton polygon. Put
h =

∑t
i=1(mi + ni) and d =

∑t
i=1 ni. Set λi = ni/hi with hi := mi + ni. We

arrange the coprime pairs (mi, ni) (i = 1, . . . , t) so that

λ1 ≥ λ2 ≥ · · · ≥ λt.

To ξ we associate the line graph obtained as the upper convex hull of the points∑j
i=1(hi, ni) for j = 0, . . . , t. The line graph starts at (0, 0) and ends at (h, d).

We call (hi, ni) (i = 1, . . . , t) segments of ξ.
Let ξ be a Newton polygon. If a point P is below or on ξ, we write P

⪯ ξ. For another Newton polygon ζ whose end point is equal to that of ξ, we
say ζ ⪯ ξ if for every point P on ζ we have P ⪯ ξ. We say ζ ≺ ξ if ζ ⪯ ξ
and ζ ̸= ξ. Let ζ and ξ be Newton polygons with ζ ≺ ξ. We say that ζ ≺ ξ is
saturated if there is no Newton polygon η such that ζ ≺ η ≺ ξ.

In the rest of this section, we introduce the notion of quasi-saturated pairs
of Newton polygons, for which almost all arguments in this paper work, and
give a numerical criterion for the saturatedness in the case that ξ consists of
two segments, see Lemma 2.2 below.

To a rational number λ = r/s with coprime non-negative integers r, s, we
associate the two-dimensional vectors

vλ = (s, r) (2)

and
αλ(ξ) =

∑
ni/hi>λ

(hi, ni) (3)

for a Newton polygon ξ of the form (1). We use the alternating form ⟨ , ⟩ on
two-dimensional vectors:

⟨(a, b), (c, d)⟩ = ad− bc. (4)

If ζ ⪯ ξ, then we have ⟨vλ, αλ(ξ) − αλ(ζ)⟩ ≥ 0 for any λ. This is clear if we
know the following graphical meaning of the value ⟨vλ, αλ(ξ)⟩: for vλ = (s, r),
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the line with slope r/s which is tangent to ξ is given by

ℓλ(ξ) : y =
r

s
x+

1

s
⟨vλ, αλ(ξ)⟩.

Note that αλ(ξ) is the first point where ℓλ(ξ) is tangent to ξ.
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If ζ ≺ ζ, then ℓλ(ζ) is below or on ℓλ(ξ), whence ⟨vλ, αλ(ζ)⟩ ≤ ⟨vλ, αλ(ξ)⟩.

Definition 2.1. We say that ζ ⪯ ξ is quasi-saturated if for each slope λ of ζ
we have ⟨vλ, αλ(ξ)− αλ(ζ)⟩ ≤ 1.

Note that the condition of ⟨vλ, αλ(ξ) − αλ(ζ)⟩ ≤ 1 is equivalent to that
there is no lattice point properly between ℓλ(ξ) and ℓλ(ζ).

Lemma 2.2. If ζ ≺ ξ is saturated, then ζ ≺ ξ is quasi-saturated. The converse
holds if ξ consists of two segments.

Proof. Let ζ ≺ ξ be a saturated pair of Newton polygons. One can write

ζ = ϱ+NP ζ ′ and ξ = ϱ+NP ξ′ (5)

so that ζ ′ ≺ ξ′ is saturated and ξ′ consists of only two segments. Write

ζ ′ = {(m1, n1), . . . , (mt, nt)} and ξ′ = {(a1, b1), (a2, b2)}. (6)

Note that ζ ′ and ϱ do not share any slope. For each slope λ of ϱ we have
⟨vλ, αλ(ξ)− αλ(ζ)⟩ = 0.

Let λ be a slope of ζ ′. Let j be the smallest index with λ = nj/hj with
hj = mj + nj . Note vλ = (hj , nj). Put v = (a1 + b1, b1) and ui = (hi, ni),
which are considered as two-dimensional vectors. We have

αλ(ξ) = αλ(ϱ) + v and αλ(ζ) = αλ(ϱ) +
∑
i<j

ui. (7)

The condition ⟨vλ, αλ(ξ) − αλ(ζ)⟩ = 1 is equivalent to the condition that in
the triangle with vertices v,

∑
i<j ui and

∑
i≤j ui, there is no lattice point
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other than the vertices (in this case the same thing holds for the triangle with
vertices v,

∑
i<l uj and

∑
i≤l ui for all l with nl/hl = λ). Hence the condition

that ⟨vλ, αλ(ξ)− αλ(ζ)⟩ = 1 for all slopes λ of ζ ′ is equivalent to that there is
no lattice point P above ζ ′ with P ⪯ ξ′ except the breaking point of ξ′. This
is equivalent to that ζ ′ ≺ ξ′ is saturated.

Example 2.3. Let ξ = (0, 1)+NP (1, 3)+NP (3, 1)+NP (1, 0) and ζ = (0, 1)+NP

(1, 2) +NP (1, 1) +NP (2, 1) +NP (1, 0). Note ζ ≺ ξ is saturated. In the proof
of the lemma above, we use the notation: ξ′ = (1, 3) +NP (3, 1) and ζ ′ =
(1, 2) +NP (1, 1) +NP (2, 1) with ρ = (0, 1) +NP (1, 0). The picture of ζ ≺ ξ is

•

•
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In the second statement in Lemma 2.2, the condition that ξ consists of
two segments is necessary:

Example 2.4. Consider ξ = (0, 1)+NP (1, 1)+NP (1, 0) and ζ = 2(1, 1). Then
ζ ≺ ξ is not saturated, since ζ ≺ (0, 1) +NP (2, 1) ≺ ξ. But ζ ≺ ξ is quasi-
saturated.

3. Slope-divisibility and minimality

A slope with exponent is a pair (λ, e) of rational number λ with 0 ≤ λ ≤ 1 and
integer e ̸= 0. Let Λ be the set of slopes with exponents:

Λ = {(λ, e) ∈ Q× Z | 0 ≤ λ ≤ 1, e ̸= 0}.

For µ = (λ, e) ∈ Λ, we call e the exponent of µ and λ the slope of µ, which will
be denoted by µ

µ := λ. (8)

Let Λe be the subset of Λ consisting of elements with exponent e. We identify
Λ1 with {λ ∈ Q | 0 ≤ λ ≤ 1} the set of usual slopes, by mapping (λ, 1) to λ.
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Let Λ+ (resp. Λ−) be the subset of Λ consisting of elements with positive (resp.
negative) exponents. We use the embedding of Λ into Z2 sending µ = (r/s, e)
with coprime integers r, s ≥ 0 to

vµ = e(s, r). (9)

Let S be a scheme in characteristic p > 0. Let FrobS : S → S be the Frobe-
nius morphism. Let X be a p-divisible group over S. Set X(pa) = X ×FrobaS

S.

We denote by Fr : X → X(p) the relative Frobenius homomorphism and by
Ver : X(p) → X the Verschiebung.

For µ = (λ, e) ∈ Λ, we write λ = r/s with coprime integers r, s ≥ 0, and
consider the quasi-isogeny

ϕµ =
(
p−rFrs

)e
from X to X(pse) if e > 0 and from X(pse) to X if e < 0. This will be simply
referred as “ϕµ on X”.

Definition 3.1. Let µ ∈ Λ. We say that X is slope divisible (resp. isoclinic
and slope divisible) with respect to µ if the quasi-isogeny ϕµ on X is an isogeny
(resp. isomorphism), where X = 0 is allowed.

Remark 3.2. If X is slope divisible with respect to µ = (λ, e), then its Serre
dual is slope divisible with respect to (1−λ,−e). Because the dual of p−rFrs on

X is p−rVers =
(
p−(s−r)Frs

)−1
on the Serre dual. In general when we consider

Ver-slopes, negative exponents appear naturally.

For µ = (λ, e) ∈ Λ, we set µ∗ := (λ,−e). Note ϕµ∗ = ϕ−1
µ .

Definition 3.3. Let µ ∈ Λ+. Let Y ⊂ X be a closed immersion of p-divisible
groups. We say that Y in X is slope bi-divisible with respect to µ if the quasi-
isogeny ϕµ on Y is an isogeny and also ϕµ∗ on X/Y is an isogeny.

Let D be the covariant Dieudonné functor with D(Fr) = V and D(Ver) =
F . Let m and n be coprime non-negative integers. Let Hm,n be the p-divisible
group over Fp whose Dieudonné module Nm,n = D(Hm,n) is given by

Nm,n =

m+n⊕
i=1

Zpϵi (10)

with Fϵi = ϵi+m and V ϵi = ϵi+n and ϵi+m+n = pϵi. Note that Hm,n is a simple
p-divisible group with slope n/(m+ n). Let ϖ be the endomorphism of Hm,n

characterized by D(ϖ)(ϵi) = ϵi+1. It is straightforward to see

ϕµ = ϖ⟨vµ,(m+n,n)⟩. (11)
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Let K be a field of characteristic p. A p-divisible group over K is called
isoclinic and minimal if it is isomorphic over the algebraic closure K of K
to the product of some copies of (Hm,n)K for a certain coprime pair (m,n)
of non-negative integers. Clearly an isoclinic minimal p-divisible group with
slope λ is slope divisible with respect to any µ with ⟨vµ, vλ⟩ ≥ 0 and is isoclinic
and slope divisible with respect to λ.

Recall the definition [10, 1.1] of minimal p-divisible groups. For a Newton
polygon ξ = {(m1, n1), . . . , (mt, nt)}, we set

H(ξ) :=
t⊕

i=1

Hmi,ni . (12)

Definition 3.4. A p-divisible group overK is called minimal if it is isomorphic
over K to H(ξ)K for some Newton polygon ξ.

Also recall the definition of completely slope divisible p-divisible groups,
which is slightly generalized from that in [15, 1.2] for later use. Let us introduce
a “partial” variant at the same time.

Definition 3.5. Let µ1, . . . , µℓ ∈ Λ+ with µ1 > · · · > µℓ. A p-divisible group
X is called partially completely slope divisible with respect to µ1, . . . , µℓ if there
exists a filtration by closed immersions of p-divisible groups

0 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xℓ−1 ⊂ Xℓ = X (13)

such that

(i) Xj (j ≤ i) are slope divisible with respect to µi for 1 ≤ i ≤ ℓ;

(ii) Gri(X) := Xi/Xi−1 is isoclinic and slope divisible with respect to µi for
1 ≤ i ≤ ℓ;

(iii) all the slopes of X0 are greater than µ1.

When X0 = 0, we remove “partially”.

By the same way as in [19, Corollary 11], one can show

Lemma 3.6. Assume that K is a perfect field of characteristic p. Let X be
a partially completely slope divisible p-divisible group over K with respect to
µ1, . . . , µℓ. Then X is isomorphic to X0 ⊕

⊕ℓ
i=1Gri(X).

Let us define the bi-divisible variant.

Definition 3.7. Let µ1, . . . , µℓ ∈ Λ+ with µ1 > · · · > µℓ. A p-divisible group
X is called partially completely slope bi-divisible with respect to µ1, . . . , µℓ if
there exists a filtration by closed immersions of p-divisible groups

0 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xℓ−1 ⊂ Xℓ = X (14)

such that
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(i) Xj (j ≤ i) are slope divisible with respect to µi for 1 ≤ i ≤ ℓ;

(ii) X/Xj (j ≥ i− 1) are slope divisible with respect to µ∗
i for 1 ≤ i ≤ ℓ;

(iii) all the slopes of X0 are greater than µ1.

When X0 = 0, we remove “partially”.

Lemma 3.8. Let X be a p-divisible group. Assume that X is partially com-
pletely slope bi-divisible with respect to µ1, . . . , µℓ. Then

(1) X is partially completely slope divisible with respect to µ1, . . . , µℓ.

(2) For i = 1, . . . , ℓ, we have that Gri(X) is slope divisible with respect to µa

for a ≥ i and µ∗
b for b ≤ i.

Proof. (1) The quasi-isogeny ϕµi : Xi/Xi−1 → Xi/Xi−1 is an isogeny, because
this is induced by the isogeny ϕµi on Xi. Consider the composition Xi/Xi−1 →
Xi/Xi−1 → X/Xi−1 of ϕµi and the restriction to Xi/Xi−1 of ϕµ∗

i
on X/Xi−1.

Since ϕµ∗
i
= ϕ−1

µi
, this composition is identical on Xi/Xi−1. In particular the

kernel of ϕµi : Xi/Xi−1 → Xi/Xi−1 is zero. Hence Xi/Xi−1 is isoclinic and
slope divisible with respect to µi.

(2) It suffices to show this for each geometric fiber. Hence we may assume
that X is a p-divisible group over an algebraically closed field. By Lemma 3.6
X is isomorphic to X0⊕

⊕ℓ
i=1Gri(X). Since Xi is slope divisible with respect

to µa for a ≥ i, its direct summand Gri(X) is also slope divisible with respect
to µa for a ≥ i. Since X/Xi−1 is slope divisible with respect to µ∗

b for b ≤ i, its
direct summand Gri(X) is also slope divisible with respect to µ∗

b for b ≤ i.

Remark 3.9. Let X be a minimal p-divisible group over a field K of charac-
teristic p. Then X is completely slope bi-divisible with respect to its slopes.

Example 3.10. Let N3,2 =
⊕5

i=1 Zpϵi be as in (10). Let M be the Dieudonné
submodule of N3,2 generated by ϵ1, pϵ2, ϵ3, ϵ4, ϵ5. Let Y be a p-divisible group
over Fp whose Dieudonné module is isomorphic to M . Let X = H1,1 ⊕ Y .
Set µ1 = (1/2, 1) and µ2 = (2/5, 1). Note that X is completely slope divisible
with respect to µ1, µ2, whose slope filtration is 0 ⊂ H1,1 ⊂ X. But X is not
completely slope bi-divisible with respect to µ1, µ2, since ϕµ∗

1
= p−1Ver2 is not

isogeny on Y .

Lemma 3.11. Let X be an NP-constant p-divisible group over S. Then the
subset of points of S over which the fiber of X is completely slope bi-divisible
with respect to µ1, . . . , µℓ is closed in S.

Proof. Write vµi = (si, ri). Let s be the least common multiple of s1, . . . , sℓ.
Let µ′

i be the elements of Λ+ such that vµ′
i
= (s/si)vµi . By [15, 2.3], the
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subset of points of S over which the fiber of X is completely slope divisible
with respect to µ′

1, . . . , µ
′
ℓ is closed in S. Then the lemma follows from the fact

[17, Proposition 2.9] that for a quasi-isogeny ρ : X → Y of p-divisible groups
over S, the subset of points of S over which ρ is an isogeny is closed in S.

We have seen in Remark 3.9 that any minimal p-divisible group is com-
pletely slope divisible. Let us study when a completely slope divisible p-
divisible group is minimal.

Proposition 3.12. Let λ ∈ Λ1. Let X be a p-divisible group over a field K
of characteristic p which is isoclinic and slope divisible with respect to λ. The
following are equivalent.

(1) X is minimal;

(2) for any µ ∈ Λ with ⟨vµ, vλ⟩ > 0, the quasi-isogeny ϕµ on X is an isogeny;

(3) for a µ ∈ Λ with ⟨vµ, vλ⟩ = 1, the quasi-isogeny ϕµ on X is an isogeny.

Proof. It suffices to show the case that K is algebraically closed. For vλ =
(m+ n, n) we write

Hλ := (Hm,n)K . (15)

(1)⇒(2): Let X be an isoclinic and minimal p-divisible group, say

X = H⊕ν
λ .

Let µ ∈ Λ with ⟨vµ, vλ⟩ > 0. As seen in (11), D(ϕµ) on D(Hλ) is the map
sending ϵi to ϵi+⟨vµ,vλ⟩. Thus ϕµ on H⊕ν

λ is an isogeny.
(2)⇒(3) is obvious.
(3)⇒(1): Write vλ = (m+n, n) and vµ = (a+ b, b). Since ϕλ = p−nFrm+n

and ϕµ = p−bFra+b, we have

ϕ−b
λ ϕn

µ = Fr, ϕ−a
λ ϕm

µ = Ver. (16)

Let Gi = X[ϕi
µ] be the kernel of the isogeny ϕi

µ on X for i = 0, 1, . . . ,m + n.
We have a filtration of X[p]:

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gm+n = X[p].

By (16) we have FrGi = Gi−n and VerGi = Gi−m. Since m and n are coprime,
{Gi/Gi−1 | i = 1, · · · ,m+n} consists of one (Ver,Fr−1)-cycle (cf. [8]), whence
Gi/Gi−1 (i = 1, · · · ,m+n) have the same rank, say ν. Thus X[p] is isomorphic
to (H⊕ν

m,n[p])K , and therefore X is minimal by [10].

Let us give an alternative proof of a special case of [11], 2.2:
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Corollary 3.13. Let X be an NP-constant p-divisible group over S. Then the
subset of points of S over which the fiber of X is minimal is closed in S.

Proof. Let λ1 > · · · > λℓ be the slopes of X . By the similar way to that in
Lemma 3.11, the subset of points of S over which the fiber of X is completely
slope divisible with respect to λ1, . . . , λℓ is closed in S. Hence we may assume
that X is completely slope divisible with respect to λ1, . . . , λℓ. Let 0 = X0 ⊂
X1 ⊂ · · · ⊂ Xℓ = X be the slope filtration. Let s be a point of S. Note
that Xs is minimal if and only if (Xi/Xi−1)s is minimal for all i = 1, . . . , ℓ (cf.
Lemma 3.6). By Proposition 3.12, (Xi/Xi−1)s is minimal if and only if ϕµ on
(Xi/Xi−1)s is an isogeny for some µ ∈ Λ with ⟨vµ, vλ⟩ = 1. Hence the corollary
follows from [17, Proposition 2.9].

LetK be a field of characteristic p. Recall the definition of the small image
of a homomorphism of p-divisible groups over K. This notion was introduced
by Zink in [19], §3. Let g : G → H be a homomorphism of p-divisible groups
over K. It is showed in [19], Prop. 8 that g has a unique factorization in the
category of p-divisible groups

G → G′ → H ′ → H,

where G′ → H ′ is an isogeny, H ′ → H is a monomorphism of p-divisible
groups and G → G′ is a homomorphism satisfying that G[pn] → G′[pn] is an
epimorphism for each natural number n. We call G′ the small image of g. In
the proof of [19], Prop. 8, the small image G′ is given by the quotient of G by
A′, where A′ is the unique p-divisible subgroup of Ker(g) such that Ker(g)/A′

is a finite group scheme. If K is perfect, then D(G′) is the image of D(g), and
D(H ′) is the smallest direct summand of D(H) containing D(G′).

Let X be a p-divisible group over K. Let µ ∈ Λ+ and write vµ = (s, r).
Let Ψµ(X) be the small image of

fµ : X ×X(ps) ps−r×Vers−−−−−−−→ X ×X −−−−→ X, (17)

where the second morphism is the addition of X. Let A = Ker(fµ). Consider
the homomorphism g : X(ps) → A sending y to (Versy,−ps−ry). The kernel
and the cokernel of g are finite, since the both are killed by ps−r. Hence the
image Z of g is the maximal p-divisible subgroup of A. By the construction of
the small image explained above, we have Ψµ(X) = X ×X(ps)/Z. Composing
(id, 0) : X → X ×X(ps) and X ×X(ps) → Ψµ(X), we have an isogeny

θµ : X −−−−→ Ψµ(X). (18)

Since the kernel of θµ is the intersection of Z and X × {0}, we have
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Lemma 3.14. We have

Ker(θµ) = Im(Vers : X(ps)[ps−r] → X[ps−r]).

Here the right hand side is the image as the fppf sheaf, which is represented by

a group scheme X(ps)[ps−r]/Ker
(
Vers

X(ps)[ps−r]

)
.

Remark 3.15. Assume that K is a perfect field. Let M be the Dieudonné
module of X. Then the Dieudonné module of Ψµ(X) is

D(Ψµ(X)) = ps−rM + F sM,

which is isomorphic to p−rV sM +M . The isogeny θµ in (18) corresponds to
the isogeny M → ps−rM +F sM sending m to ps−rm. The Dieudonné module
of Ker(θµ) is

(ps−rM + F sM)/ps−rM,

which is isomorphic to (M + p−(s−r)F sM)/M .

Lemma 3.16. Let µ = (λ, e) ∈ Λ+. The following are equivalent.

(1) logp deg(θµ) = 0.

(2) X is slope divisible with respect to µ∗ = (λ,−e).

In case, in particular the slopes of X are less than or equal to λ.

Proof. From the above remark, it is clear that (1) is equivalent to p−(s−r)Vers

is an isogeny on X. Since p−(s−r)Vers = (p−rFrs)−1, we have the lemma.

For µ = (µ, e) ∈ Λ+, we set αµ(ξ) to be αµ(ξ).

Proposition 3.17. Let ξ be the Newton polygon of X. Assume that there is
a short exact sequence

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0

of p-divisible groups over K, which splits over K. Let µ ∈ Λ+ such that the
slopes of Y are greater than or equal to µ and the slopes of Z are less than or
equal to µ. Then we have

logp deg(θµ) ≥ ⟨vµ, αµ(ξ)⟩,

where the equality holds if and only if Y in X is slope bi-divisible with respect
to µ.
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Proof. We may assume that K is an algebraically closed field and X = Y ×Z.
Let h (resp. d) be the height (resp. the dimension) of Y . Then ⟨vµ, αµ(ξ)⟩ =
⟨vµ, (h, d)⟩. Let M be the Dieudonné module of Y . Set A = F sM and B =
ps−rM . Then

logp deg(θµ) = length(A+B)/B + logp deg(θµ on Z).

Lemma 3.16 says that logp deg(θµ on Z) = 0 if and only if Z is slope divisible
with respect to µ∗. Since Coker((A + B)/A → M/A) = Coker((A + B)/B →
M/B), we have

length(A+B)/B = lengthM/B − lengthM/A+ length(A+B)/A

= (s− r)h− s(h− d) + length(A+B)/A

= ⟨vµ, αµ(ξ)⟩+ length(A+B)/A.

Obviously (A + B)/A ≃ (M + p−rV sM)/M is zero if and only if Y is slope
divisible with respect to µ.

Lemma 3.18. Let µ ∈ Λ+ and µ′ ∈ Λ. If X is slope divisible with respect to µ′,
then Ψµ(X) is slope divisible with respect to µ′. If X is a minimal p-divisible
group, then so is Ψµ(X).

Proof. It suffices to show this over an algebraically closed field. Let M be the
Dieudonné module of X. Write vµ = (s, r) and v′µ = (s′, r′). Obviously if

p−r′V s′M ⊂ M , then p−r′V s′N ⊂ N for N = ps−rM + F sM . The second
assertion follows from Proposition 3.12.

We collect some basic properties of the operators Ψµ(−) for µ ∈ Λ+.

Lemma 3.19. Let X be a p-divisible group over K.

(1) We have Ψµ(Ψµ′(X)) = Ψµ′(Ψµ(X)) for µ, µ′ ∈ Λ+.

(2) Let µ ∈ Λ+. Let

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0

be an exact sequence of p-divisible groups over K which splits over K.
Then Y → X induces a monomorphism Ψµ(Y ) → Ψµ(X) and we have a
canonical isomorphism

Ψµ(Z) ≃ Ψµ(X)/Ψµ(Y ).

Proof. (1) Consider the natural isogeniesX → Ψµ(Ψµ′(X)) andX → Ψµ′(Ψµ(X))
(the former one is the composition of θµ′ on X and θµ on Ψµ′(X) and the lat-
ter one is obtained by exchanging the roles of µ and µ′). We claim that those

12



kernels are the same. It suffices to see this over K. Let M = D(XK) and set
Uµ = p−rV s for vµ = (s, r). The claim over K follows from the equality

D(Ψµ(Ψµ′(XK))) = M + Uµ′M + UµM + UµUµ′M = D(Ψµ′(Ψµ(XK))).

(2) Since the kernel of θµ : Y → Ψµ(Y ) is contained in the kernel of
θµ : X → Ψµ(X), we have a homomorphism Ψµ(Y ) → Ψµ(X). It suffices to
show that this is a monomorphism over K. We may assume XK = YK × ZK .
Then

Ψµ(XK) = Ψµ(YK)×Ψµ(ZK). (19)

Hence obviously Ψµ(YK) → Ψµ(XK) is a monomorphism.
Note that θµ onX and that on Y induce an isogeny ϑ : Z → Ψµ(X)/Ψµ(Y ).

It is enough to show that the kernel of ϑ is the same as the kernel of θµ : Z →
Ψµ(Z). This follows from the fact that overK there is a canonical isomorphism
Ψµ(ZK) ≃ Ψµ(XK)/Ψµ(YK), which is obtained from (19).

From now on, for µ, µ′ ∈ Λ+ we write ΨµΨµ′(X) for Ψµ(Ψµ′(X)) and
Ψ2

µ(X) for Ψµ(Ψµ(X)) and so on.
In [19], Lemma 9 and the argument following it, Zink explicitly con-

structed an isogeny from a given p-divisible group X over K to a p-divisible
group which is slope divisible with respect to the smallest slope of X. In the
next lemma, we generalize this a little bit for later use.

Lemma 3.20. Let X be a p-divisible group over K of height h. Let µ be an
element of Λ+ whose slope is less than or equal to the smallest slope of X. Then
Ψh−1

µ (X) is slope divisible with respect to µ. In particular if X is isoclinic of

slope λ, then Ψh−1
µ Ψh−1

λ (X) is minimal for µ ∈ Λ+ with ⟨vµ, vλ⟩ = 1.

Proof. If suffices to show this over an algebraically closed field. Let M be
the Dieudonné module of X. Write vµ = (s, r) and set Uµ = p−rV s. The
Dieudonné module D(Ψh−1

µ (X)) of Ψh−1
µ (X) is isomorphic to

M + UµM + · · ·+ Uh−1
µ M.

We have UµD(Ψh−1
µ (X)) ⊂ D(Ψh−1

µ (X)), since the proof of [19, Lemma 9]
works without change. Thus we obtain the first assertion. The second one
follows from Lemma 3.18 and Proposition 3.12.

The following bi-divisible variant of Lemma 3.20 plays an important role
in the proof of our main results.

Lemma 3.21. Let X,Y, Z and µ be as in Proposition 3.17. Let h be the height
of X. Then Ψh−1

µ (Y ) in Ψh−1
µ (X) is slope bi-divisible with respect to µ.

13



Proof. It is enough to show this over an algebraically closed field. We may
assume X = Y × Z. Applying Lemma 3.20 to Y , we have that Ψh−1

µ (Y ) is

slope divisible with respect to µ. It remains to show that Ψh−1
µ (Z) is slope

divisible with respect to µ∗. Let N be the Dieudonné module of Z. The
Dieudonné module of Ψµ(Z) is p−rV sN+N , which is isomorphic to N+Uµ∗N
where Uµ∗ = (p−rV s)−1 = p−(s−r)F s. Hence the Dieudonné module Ψh−1

µ (Z)
is isomorphic to

M + Uµ∗M + · · ·+ Uh−1
µ∗ M.

One can show that this is slope divisible with respect to µ∗, in the same way
as in Lemma 3.20, considering Ver-slope in stead of slope (=Fr-slope).

The next proposition will be used in induction steps when we construct an
isogeny from a given p-divisible group over K to a completely slope bi-divisible
p-divisible group.

Proposition 3.22. Let X be a partially completely slope bi-divisible p-divisible
group over K with respect to µ2, . . . , µℓ with filtration

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xℓ−1 ⊂ Xℓ = X.

Let µ1 be an element of Λ+ whose slope is greater than µ2 and is less than or
equal to the smallest slope of X1. Let e be a non-negative integer such that
Ψe

µ1
X1 in Ψe

µ1
X is slope bi-divisible with respect to µ1 (Lemma 3.21 says that

e = h − 1 satisfies this condition). Then Ψe
µ1
X is partially completely slope

bi-divisible with respect to µ1, µ2, . . . , µℓ.

Proof. Set Y := Ψe
µ1
X and Yi := Ψe

µ1
Xi for i = 1, . . . , ℓ. As obtained in [19],

(11) on p. 89, there is an exact sequence of p-divisible groups

0 −−−−→ Y
ϕµ1−nul
1 −−−−→ Y1 −−−−→ Y

ϕµ1−ét
1 −−−−→ 0, (20)

where Y
ϕµ1−ét
1 and Y

ϕµ1−nul
1 are characterized by the property that ϕµ1 induces

an isomorphism on Y
ϕµ1−ét
1 [pn] and is nilpotent on Y

ϕµ1−nul
1 [pn] for all n. Put

Y0 := Y
ϕµ1−nul
1 . We claim that Y is partially completely slope bi-divisible with

respect to µ1, µ2, . . . , µℓ with filtration

0 ⊂ Y0 ⊂ Y1 ⊂ · · · ⊂ Yℓ = Y.

We need to check that this filtration Y• satisfies the conditions (i), (ii), (iii) in
Definition 3.7.

By the definition of Y0, all the slopes of Y0 are greater than µ1, whence
Y• satisfies (iii).

As Xj (j ≤ i) are slope divisible with respect to µi for 2 ≤ i ≤ ℓ, so are Yj
(j ≤ i) by Lemma 3.18. By the assumption, Y1 is slope divisible with respect
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to µ1. As X1 is slope divisible with respect to µi (i ≥ 2), so is Y1 = Ψe
µ1
X1

by Lemma 3.18. Since (Y0)K is a direct summand of (Y1)K , we have that Y0
is slope divisible with respect to µi (i ≥ 1). Hence Y• satisfies (i).

By Lemma 3.19, (2), the p-divisible group Y/Yj is isomorphic to Ψe
µ1
(X/Xj)

for j ≥ 1. By Lemma 3.18, Y/Yj ≃ Ψe
µ1
(X/Xj) (j ≥ 1) is slope divisible with

respect to µ∗
i for i ≤ j + 1. Over the algebraic closure K of K, we have

(Y/Y0)K ≃ (Y1/Y0)K ⊕ (Y/Y1)K . Since (Y1/Y0)K and (Y/Y1)K are both slope
divisible with respect to µ∗

1, we have that (Y/Y0)K is slope divisible with re-
spect to µ∗

1 and therefore so is Y/Y0. Thus Y• satisfies (ii).

Now we get the main result over a field of characteristic p:

Corollary 3.23. Let X be a p-divisible group over K of height h. Let λ1 >
λ2 > · · · > λℓ be the set of positive slopes of X. Then

(1) (
∏ℓ

i=1Ψ
h−1
λi

)(X) is completely slope bi-divisible with respect to λ1, . . . , λℓ, 0.

(2) We choose µi ∈ Λ+ such that ⟨vµi , vλi
⟩ = 1. Then (

∏ℓ
i=1Ψ

h−1
µi

Ψh−1
λi

)(X)
is minimal.

Here recall that λi is regarded as the element (λi, 1) of Λ1 for each i = 1, . . . , ℓ.

Proof. It suffices to show these over the algebraic closure of K. Therefore we
assume that K is algebraically closed. Then, as it suffices to show them for
the formal part of X, we may assume that X is a formal p-divisible group (i.e.,
every slope of X is positive).

(1) By Proposition 3.22, inductively one can check that (
∏ℓ

i=j Ψ
h−1
λi

)(X)
is partially completely slope bi-divisible with respect to λj , . . . , λℓ.

(2) Set Y := (
∏ℓ

i=1Ψ
h−1
λi

)(X). By (1), Y is completely slope bi-divisible

with respect to λ1, . . . , λℓ. Set Z := (
∏ℓ

i=1Ψ
h−1
µi

)(Y ), which is also completely
slope bi-divisible with respect to λ1, . . . , λℓ. Since Grj(Y ) is isoclinic and slope

divisible with respect to λj , so is Grj(Z) = (
∏ℓ

i=1Ψ
h−1
µi

)Grj(Y ) by Lemma

3.18. Also Grj(Z) = Ψh−1
µj

(
∏

i ̸=j Ψ
h−1
µi

Grj(Y )) is slope divisible with respect
to µj by Lemma 3.20. Hence Grj(Z) is minimal by Proposition 3.12 and
therefore so is Z.

4. Proof

We start with proving our main result (Proposition 4.1) over a discrete valu-
ation ring. Based on this result, we shall show the main theorem (Theorem
4.2).

The result over a discrete valuation ring is stated in terms of Raynaud’s
flat extension. Let R be a discrete valuation ring of characteristic p. Let K be
the quotient ring of R. Let X be a p-divisible group over R. Write X = XK .

15



Let G be a finite subgroup scheme of X. This defines an isogeny ρ : X → Y
of p-divisible groups with G = ker(ρ). Let N be a sufficiently large integer
such that G ⊂ X[pN ]. Let G be the schematic closure in X [pN ] of G. Note
that G is a flat subgroup scheme of X [pN ], see [18], p. 259–260. By taking the
quotient by G, we have an isogeny ρ̃ : X → Y. This construction of the isogeny
ρ̃ : X → Y from a given data (X , ρ : X → Y ) is called the flat extension.

An NP-quasi-saturated p-divisible group over (S,D) is defined by replacing
“saturated” by “quasi-saturated” in the definition of NP-saturated p-divisible
group over (S,D). An NP-quasi-saturated p-divisible group over R is that over
(S,D) with S = Spec(R) and D = Spec(k), where k is the residue field of R.

Proposition 4.1. Let X be an NP-quasi-saturated p-divisible group over R.
Set X = XK . Let ξ (resp. ζ) be the Newton polygon of X (resp. Xk). Let
{µ1, . . . , µℓ} be a subset of Λ+ containing all slopes of ζ such that ⟨vµi , αµi(ξ)−
αµi(ζ)⟩ ≤ 1. Suppose µ1 > · · · > µℓ. Then there exists an isogeny ρ : X → Y
over K whose flat extension X → Y satisfies that YK is minimal and Yk is
completely slope bi-divisible with respect to µ1, . . . , µℓ. Moreover, the isogeny
ρ : X → Y can be taken as a composition of θµi’s for 1 ≤ i ≤ ℓ, see (18) for
the definition of θµ.

Proof. We first reduce to the case where X is minimal. If the theorem is true
for minimal X ′, choose an isogeny X → X ′ with X ′ minimal (Corollary 3.23,
(2)), let X ′ → Y be an isogeny obtained from the theorem for X ′; then the
composition ρ : X → X ′ → Y satisfies the properties of the theorem.

So we assume that X is minimal. It suffices to show that if Xk is partially
completely slope bi-divisible with respect to µi+1, . . . , µℓ, then there exists an
isogeny X → Y such that Y is minimal and Yk is partially completely slope
bi-divisible with respect to µi, . . . , µℓ.

Set µ = µi and write vµ = (s, r). Let G be the fppf sheaf obtained as the
sheafification of the functor sending an R-algebra A to

Im(Vers : X (ps)[ps−r](A) → X [ps−r](A)).

For an R-algebra S let GS be the functor obtained by restricting G to S-
algebras. Note that Gk (resp. GK) is represented by a finite group scheme Gk

(resp. GK). We have seen in Lemma 3.14 that Gk (resp. GK) is the kernel of
θµ : Xk → Ψµ(Xk) (resp. θµ : XK → Ψµ(XK)). Set

H := Ker(Vers : X (ps)[ps−r] → X [ps−r]).

By the upper-semicontinuity for the structure sheaf of H, we have

rkGk ≤ rkGK . (21)
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We claim that rkGk = rkGK if (Xk)i in Xk is not slope bi-divisible with
respect to µ. By Proposition 3.17 for XK , we have

logp rkGK = ⟨vµ, αµ(ξ)⟩. (22)

Also by Proposition 3.17 again, we get

logp rkGk ≥ ⟨vµ, αµ(ζ)⟩, (23)

where the equality holds if and only if (Xk)i in Xk is slope bi-divisible with
respect to µ. By our assumption, the difference of the right hand sides of (22)
and (23) is at most one:

⟨vµ, αµ(ξ)− αµ(ζ)⟩ ≤ 1. (24)

Clearly (21) ∼ (24) imply the claim.
If rkGk = rkGK , then H is flat over R, whence G is represented by a finite

flat group scheme G which is isomorphic to the quotient X (ps)[ps−r]/H (cf. [1,
Exp. V]). Putting Ψµ(X ) = X/G, we have the canonical isogeny X → Ψµ(X ).
Note that Ψµ(X )k = Ψµ(Xk) and Ψµ(X )K = Ψµ(XK).

This argument can be applied to Ψµ(X ) if Ψµ(Xk)i in Ψµ(Xk) is not slope
bi-divisible with respect to µ. Repeating this argument, we have the sequence
of isogenies

X → Ψµ(X ) → · · · → Ψe
µ(X ),

where e is the smallest non-negative integer such that Ψe
µ(Xk)i in Ψe

µ(Xk) is
slope bi-divisible with respect to µ. Here we used Lemma 3.21 for the existence
of e. This sequence is obtained by the flat extension of

X → Ψµ(X) → · · · → Ψe
µ(X),

where all Ψi
µ(X) are minimal. Let X → Y be the isogeny X → Ψe

µ(X).
Then its flat extension X → Y coincides with X → Ψe

µ(X ). It follows from
Proposition 3.22 that Yk is partially completely slope bi-divisible with respect
to µi, . . . , µℓ.

We generalize Proposition 4.1 to the case of general (S,D), using the same
technique as in [15].

Theorem 4.2. Let S be an integral noetherian scheme with prime Weil divisor
D. Assume that S is regular at the generic point of D. Let X be an NP-quasi-
saturated p-divisible group over (S,D). Let ξ (resp. ζ) be the Newton polygon
of XS\D (resp. XD). Let {µ1, . . . , µℓ} be a subset of Λ+ containing all slopes of
ζ such that ⟨vµi , αµi(ξ)− αµi(ζ)⟩ ≤ 1. Suppose µ1 > · · · > µℓ. Then there is a
finite birational morphism π : T → S such that XT is isogenous to a p-divisible
group Y over T such that all the geometric fibers over T \π−1(D) are minimal
and Yπ−1D is completely slope bi-divisible with respect to µ1, . . . , µℓ.
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Proof. Let η be the generic point of D. Let R = OS,η and K = frac(R). Set
X = XK . Let ρ : X → Y be the isogeny over K constructed in Proposition
4.1.

Let G be the kernel of ρ, and let G be the scheme-theoretic image of
G → X [pN ] for sufficient large N . Let V be the largest open subvariety such
that G is flat over V . Note that V contains the generic point η of D. We have
the p-divisible group Y ′ := XV /GV over V with isogeny

ρ′ : XV −−−−→ Y ′.

Let d be the degree of ρ. We make use of the moduli space M of isogenies
from X of degree d. This is defined to be the scheme over S representing the
following functor M from the category of S-schemes to that of sets. For an S-
scheme T , an element of M(T ) is the isomorphism class of an isogeny XT → Z
of degree d over T , where Z is a p-divisible group over T . It is known that M
is represented by a projective scheme M over S, see [15], 2.3.

Now ρ′ defines a morphism V → M commuting the diagram

M

��

>>

||
||
||
||

V // S.

Let S̃ be the scheme-theoretic image of V in M. Then we have a morphism
f : S̃ → S, which is proper, surjective and birational. The inclusion S̃ ⊂ M
defines an isogeny XS̃ → Y ′′ over S̃. Since Y ′′ is minimal over the generic point

of S̃ \ f−1(D), by Corollary 3.13 Y ′′ is minimal over S̃ \ f−1(D). Also Y ′′
f−1(D)

is completely slope bi-divisible over every generic point, and therefore Y ′′
f−1(D)

is completely slope bi-divisible by Lemma 3.11.
Let

S̃ −−−−→ T
π−−−−→ S

be the Stein factorization with f∗OS̃ = OT . Let x ∈ T and let S̃x be the fiber

over x of S̃ → T . By [15], 2.5 Lemma, the image of S̃x → M is finite. Since
S̃x is connected, the image is a single point of M. From [15], 2.6 Lemma, we
have a morphism T → M. This defines a desired isogeny

XT −−−−→ Y

over T .

The next is the result in the NP-saturated case, from which Corollary 1.1
follows immediately.
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Corollary 4.3. Let S,D be as in Theorem 4.2. Let X be an NP-saturated p-
divisible group over (S,D). Then there is a finite birational morphism T → S
such that XT is isogenous to a p-divisible group Y over T whose geometric
fibers are all minimal.

Proof. Let ξ (resp. ζ) be the Newton polygon of XS\D (resp. XD). As in (5)
we write

ζ = ϱ+NP ζ ′ and ξ = ϱ+NP ξ′ (25)

so that ζ ′ ≺ ξ′ is saturated and ξ′ consists of only two segments. Let a (resp.
b) be the smallest (resp. biggest) slope of ξ′.

In order to apply Theorem 4.2 to X , we need to choose µ1, . . . , µℓ as in
Theorem 4.2. We will define them as the union of three kinds of subsets of
Λ1, which will be labeled as A,B and C. (For the definition of Λ1, see the
sentence following (8) in §3. Recall that Λ1 is canonically identified with the
set of slopes λ ∈ Q with 0 ≤ λ ≤ 1.) First A is the set of slopes of ζ. Let B
be the set of ν ∈ Λ1 such that vν or −vν is equal to αλ(ξ) − αλ(ζ) for some
slope λ of ζ ′. For each positive slope λ of ρ, we choose a ν ∈ Λ1 satisfying the
following two properties: (i) ⟨vν , vλ⟩ = 1 and (ii) ν is sufficiently close to λ so
that ν is distinct from the slope of any element of A ∪B. Let C be the set of
such ν’s. Let µ1, . . . , µℓ be the union of A,B and C, and arrange them so that
µ1 > . . . > µℓ. Theorem 4.2 is applicable for these µ1, . . . , µℓ. Indeed

⟨vµi , αµi(ξ)− αµi(ζ)⟩ ≤ 1 (26)

hold for i = 1, . . . , ℓ. For µi ∈ A, this follows from the fact that ζ ≺ ξ is quasi-
saturated (Lemma 2.2). For µi ∈ B, the slope of µi is outside [a, b]; hence the
left hand side of (26) is equal to zero. Also for µi ∈ C, the inequality (26)
holds.

Let Y be the p-divisible group obtained by Theorem 4.2. Let s be any
geometric point of π−1(D). Let λ be any slope of ζ. Let Zλ be the non-zero
Gri(Ys) of slope λ. Since Ys is completely slope divisible, Zλ is slope divisible
with respect to λ. If λ is zero, then Zλ is étale and therefore Zλ ≃ H1,0,
whence this is minimal. If λ > 0, then there exists ν ∈ {µ1, . . . , µℓ, µ

∗
1, . . . , µ

∗
ℓ}

such that ⟨vν , vλ⟩ = 1, and Zλ is slope divisible with respect to ν. It follows
from Proposition 3.12 that Zλ is minimal. Thus every Gri(Ys) is minimal, and
therefore so is Ys.

Example 4.4. For the case of Example 2.3, we illustrate the subsets A, B
and C of Λ1 which appeared in the proof of Corollary 4.3. The saturated
pair of Newton polygons is: ξ = (0, 1) +NP (1, 3) +NP (3, 1) +NP (1, 0) and
ζ = (0, 1) +NP (1, 2) +NP (1, 1) +NP (2, 1) +NP (1, 0). We use the identification
of Λ1 with the set of slopes. First, as A is the set of slopes of ζ, we have
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A = {1, 2/3, 1/2, 1/3, 0}. In the picture below, the dotted arrows correspond
to the elements of B. So B = {1, 3/4, 0}.

•

•

α2/3(ζ)

•

α1/2(ζ)

•

α1/3(ζ)

•

α0(ζ)

•

•

α2/3(ξ) = α1/2(ξ) = α1/3(ξ)

���������

ttttttttttttttttttttt

ooooooooooooo

jjjjjjjjjjjjjjjjjjj

gggggggggggggggggggggggg ζ

ξ

x

y

//??;;

//

OO

Finally, n/(n + 1) for any sufficiently large n can be an element of C. If we
choose 4/5, then C = {4/5}. Thus the union of A, B and C is

{1, 4/5, 3/4, 2/3, 1/2, 1/3, 0}.

5. Application: the configuration of minimal p-kernel types

Recall [2, Corollary 3.2] that the central streams [11, 3.10] in the moduli space
of principally polarized abelian varieties are configurated as given by the partial
ordering on symmetric Newton polygons. As an application of Corollary 1.1 we
shall show its unpolarized analogue (Corollary 5.1), with a geometrical proof,
whereas [2] uses a combinatorial method.

Let h be a natural number. Let c, d be non-negative integers with c+d = h.
Let W be the Weyl group of GLh. Let ∆ = {α1, . . . , αh−1} be the set of simple
roots as usual. Let si be the simple reflection associated to αi. Set I = ∆\{αc}.
Let WI be the subgroup of W generated by si with αi ∈ I. Let IW be the set
of the minimal-length representatives of WI\W .

Let k be an algebraically closed field. Recall the classification theory of
truncated Barsotti-Tate groups of level one (BT1’s) over k found by Kraft [8]
and rediscovered by Oort and reproved and formulated as follows by Moonen-
Wedhorn [9]. It says that there exists a canonical bijection from IW to the set
of isomorphism classes of BT1’s over k of codimension c and of dimension d.

We use F -zips, which in this paper mean those with support contained in
{0, 1} in the terminology of [9]. Let S be a scheme in characteristic p > 0. An
F -zip over S is a quintuple (N,C,D, φ, φ̇) consisting of locally free OS-module
N and OS-submodules C,D of N which are locally direct summands of N with
OS-linear isomorphisms φ : (N/C)(p) → D and φ̇ : C(p) → N/D. Let G be a
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BT1 over k. To G we associate an F -zip (D(G), V D(G), F D(G), F, V −1). This
gives a canonical bijection from the set of BT1’s over k and the set of F -zips
over k.

Let wξ ∈ IW denote the p-kernel type of the minimal p-divisible group
H(ξ)k of Newton polygon ξ. For v, w ∈ IW we say v ⊂ w if there exists
an F -zip over a discrete valuation ring of which the generic fiber (resp. the
special fiber) is of type w (resp. of type v). It follows from [16, Theorem 12.17]
that ⊂ is a partial ordering on IW and this coincides with the partial ordering
introduced and investigated by He [5].

Corollary 5.1. wζ ⊂ wξ if and only if ζ ⪯ ξ.

Proof. For the “if”-part, since ⊂ is a partial ordering, it is enough to show the
case that ζ ≺ ξ is saturated. Applying Corollary 1.1 to a family with saturated
ζ ≺ ξ and with a-number ≤ 1, constructed in [12], (3.2), we have wζ ⊂ wξ.

Suppose wζ ⊂ wξ. There exists an F -zip N over a discrete valuation ring
R with algebraically closed residue field whose special fiber is of type wζ and
whose generic fiber is of type wξ. Then there exists a display M over R such
that M/IRM is isomorphic to N , see [4, Lemma 4.1]. By [10], the special
fiber (resp. the generic fiber) of M is minimal of Newton polygon ζ (resp. ξ).
By Grothendieck-Katz [7, Th. 2.3.1 on p. 143], we have ζ ⪯ ξ.

Combining this with [4, Theorem 1.1], one can get the unpolarized ana-
logue of Oort’s conjecture [11, 6.9]. The original conjecture was proved in [3]
and [13], also see [14] for a generalization to some Shimura varieties.

Corollary 5.2. If there exists a p-divisible group with Newton polygon ξ and
p-kernel type w, then we have wξ ⊂ w.

Proof. Let ξ(w) be the supremum of Newton polygons of p-divisible groups
with p-kernel type w. We have ξ ⪯ ξ(w). From Corollary 5.1 it follows that
wξ ⊂ wξ(w). Recall [4, Theorem 1.1], which says that ξ(w) is the maximal one
among Newton polygons η with wη ⊂ w. In particular we have wξ(w) ⊂ w.
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[18] M. Raynaud: Schémas en groupes de type (p, . . . , p). Bull. Soc. Math.
France 102 (1974), 241–280.

[19] Th. Zink: On the slope filtration. Duke Math. J. 109 (2001), no. 1, 79–95.

23


