# Ekedahl-Oort strata contained in the supersingular locus and Deligne-Lusztig varieties 

Shushi Harashita<br>Dedicated to Professor Tomoyoshi Ibukiyama on his 60th birthday


#### Abstract

We study the moduli space of principally polarized abelian varieties over fields of positive characteristic. In this paper we describe certain unions of Ekedahl-Oort strata contained in the supersingular locus in terms of Deligne-Lusztig varieties. As a corollary we show that each Ekedahl-Oort stratum contained in the supersingular locus is reducible except possibly for small $p$.


## 1 Introduction

Let $\mathcal{A}_{g}$ be the moduli space of principally polarized abelian varieties over fields of characteristic $p>0$. The moduli space $\mathcal{A}_{g}$ has the Newton polygon stratification, which is defined by isogeny types of $p$-divisible groups. Ekedahl and Oort introduced another new stratification on $\mathcal{A}_{g}$ in [27], which is now called the Ekedahl-Oort stratification: two principally polarized abelian varieties $A$ and $B$ are in the same stratum if and only if there exists an isomorphism between their $p$-kernels $A[p]$ and $B[p]$ over an algebraically closed field. The isomorphism classes of such $p$-kernels are classified by elements of a subset ${ }^{I} W_{g}$ of the Weyl group $W_{g}$ of the symplectic group $\mathrm{Sp}_{2 g}$. We write $\mathcal{S}_{w}$ for the Ekedahl-Oort stratum related to $w \in{ }^{I} W_{g}$.

In the usual way we identify $W_{g}$ with

$$
\begin{equation*}
\{w \in \operatorname{Aut}\{1, \ldots, 2 g\} \mid w(i)+w(2 g+1-i)=2 g+1\} . \tag{1}
\end{equation*}
$$

Let $\left\{s_{1}, \ldots, s_{g}\right\}$ be the set of simple reflections, where $s_{i}=(i, i+1) \cdot(2 g-$ $i, 2 g+1-i)$ for $i<g$ and $s_{g}=(g, g+1)$. Let $I=\left\{s_{1}, \ldots, s_{g-1}\right\}$ and let $W_{g, I}$ be the subgroup of $W_{g}$ generated by elements of $I$. We denote by ${ }^{I} W_{g}$ the set of $(I, \emptyset)$-reduced elements of $W_{g}$ (cf. [3], Chap. IV, Ex. $\S 1,3$ ), which is a set of representatives of $W_{g, I} \backslash W_{g}$. We also write $\bar{W}_{g}$ for $W_{g, I} \backslash W_{g} / W_{g, I}$. Note ${ }^{I} W_{g}$ is explicitly given by

$$
\begin{equation*}
{ }^{I} W_{g}=\left\{w \in W_{g} \mid w^{-1}(1)<\cdots<w^{-1}(g)\right\} . \tag{2}
\end{equation*}
$$

For $c \leq g$ let

$$
\begin{equation*}
{ }^{I} W_{g}^{[c]}=\left\{w \in{ }^{I} W_{g} \mid w(i)=i, \forall i \leq g-c\right\}, \tag{3}
\end{equation*}
$$

and set ${ }^{I} W_{g}^{(c)}={ }^{I} W_{g}^{[c]}-{ }^{I} W_{g}^{[c-1]}$ for $c>0$ and ${ }^{I} W_{g}^{(0)}={ }^{I} W_{g}^{[0]}=\{\mathrm{id}\}$. We define a map

$$
\begin{equation*}
\mathfrak{r}:{ }^{I} W_{g}^{(c)} \longrightarrow \bar{W}_{c} \tag{4}
\end{equation*}
$$

by sending $w$ to the class of $v \in W_{c}$ determined by $v(i)=w(g-c+i)-(g-c)$ for all $1 \leq i \leq c$. We denote by $\bar{W}_{c}^{\prime}$ the image of $\mathfrak{r}$.

Assume $c \leq\lfloor g / 2\rfloor$. For $w^{\prime} \in \bar{W}_{c}^{\prime}$, we shall investigate the union $\mathcal{J}_{w^{\prime}}$ of the Ekedahl-Oort strata $\mathcal{S}_{w}$ with $w \in{ }^{I} W_{g}^{(c)}$ and $\mathfrak{r}(w)=w^{\prime}$ :

$$
\begin{equation*}
\mathcal{J}_{w^{\prime}}=\bigcup_{\mathfrak{r}(w)=w^{\prime}} \mathcal{S}_{w} \tag{5}
\end{equation*}
$$

For each $c$, we fix once and for all a symplectic vector space $\left(L_{0},\langle\rangle,\right)$ over $\mathbb{F}_{p^{2}}$ of dimension $2 c$ and a maximal totally isotropic subspace $C_{0}$ over $\mathbb{F}_{p^{2}}$ of $L_{0}$. Let $\operatorname{Sp}\left(L_{0}\right)$ denote the symplectic group over $\mathbb{F}_{p^{2}}$ associated to $\left(L_{0},\langle\rangle,\right)$. Let $\mathrm{P}_{0}$ be the parabolic subgroup of $\operatorname{Sp}\left(L_{0}\right)$ stabilizing $C_{0}$. Let X be the flag variety $\operatorname{Sp}\left(L_{0}\right) / \mathrm{P}_{0}$ over $\mathbb{F}_{p^{2}}$. For $w^{\prime} \in \bar{W}_{c}$, let $\mathrm{X}\left(w^{\prime}\right)$ be the Deligne-Lusztig variety in X related to $w^{\prime}$. We shall review the definition of Deligne-Lusztig varieties in §2.6.
Main theorem. Assume $c \leq\lfloor g / 2\rfloor$. For each $w^{\prime} \in \bar{W}_{c}^{\prime}$, there exists a finite surjective morphism

$$
\mathrm{G}(\mathbb{Q}) \backslash \mathrm{X}\left(w^{\prime}\right) \times \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K} \longrightarrow \mathcal{J}_{w^{\prime}}
$$

over $\mathbb{F}_{p^{2}}$, which is bijective on geometric points, see §3.2 for the definition of the quaternion unitary group G over $\mathbb{Z}$ and the open compact subgroup $K$ of $G\left(\mathbb{A}^{\infty}\right)$ and see §3.4 for the $\mathrm{G}(\mathbb{Q})$-action on $\mathrm{X}\left(w^{\prime}\right)$.

In this paper we shall prove this theorem in the case of $g \geq 2$. If $g=1$, then ${ }^{I} W_{1}^{(0)}=\{\mathrm{id}\}$ and $\mathcal{S}_{\text {id }}$ consists of the supersingular elliptic curves, see Deuring [7] and Igusa [14] for this case. The case of $g=2$ has been studied by Ibukiyama-Katsura-Oort [13] and Katsura-Oort [16]. In the case of unitary Shimura varieties, Vollaard [30] has dealt with the decompositions of some basic loci into Deligne-Lusztig varieties.

The main theorem above seems to have been refined by Hoeve, see [12] where he described individual Ekedahl-Oort strata contained in the supersingular locus in terms of "fine" Deligne-Lusztig varieties. We also mention the paper [31] by Vollaard and Wedhorn, in which they proved an analogous result in the case of unitary Shimura varieties. Deligne-Lusztig varieties also appear in the paper [9] by Görtz and Yu, where they studied supersingular Kottwitz-Rapoport strata.

Thanks to Bonnafé and Rouquier [1], we have a corollary to the main theorem (see $\S 3.5$ for further details):

Corollary. For any $w^{\prime} \in \bar{W}_{c}^{\prime}$ with $c \leq\lfloor g / 2\rfloor$, the number of irreducible (connected) components of $\mathcal{J}_{w^{\prime}}$ equals the class number $H_{g, c}=\sharp \mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}$.

Oort conjectured that (i) $\mathcal{S}_{w}$ is irreducible if $\mathcal{S}_{w}$ is not contained in the supersingular locus and (ii) $\mathcal{S}_{w}$ is reducible for sufficiently large $p$ otherwise. In Remark 2.5 .7 we shall see that $\mathcal{S}_{w}$ is contained in the supersingular locus if and only if $w \in{ }^{I} W_{g}^{(c)}$ with $c \leq\lfloor g / 2\rfloor$. Ekedahl and van der Geer proved in [8], Theorem 11.5 that $\mathcal{S}_{w}$ is irreducible for every $w \in{ }^{I} W_{g}^{(c)}$ with $c>\lfloor g / 2\rfloor$; thus (i) was proved. In the last section we shall confirm (ii) by showing $\lim _{p \rightarrow \infty} H_{g, c}=$ $\infty$.

## Acknowledgments

I am very grateful to Frans Oort and Gerard van der Geer for a lot of suggestions and for informing me of their recent results. In particular Frans Oort suggested showing the reducibility of Ekedahl-Oort strata contained in the supersingular locus for large $p$. I thank Michael Rapoport for helpful comments and remarks. I am grateful to Torsten Wedhorn and Maarten Hoeve who pointed out some mistakes in an earlier version. I wish to thank Takayuki Oda for his constant encouragement and some linguistic assistant. I also thank Syu Kato for stimulating conversation on Deligne-Lusztig varieties. This research is partially supported by JSPS Research Fellowship for Young Scientists.

## 2 Preliminaries

We recall some basic definitions and facts on the Dieudonné theory, abelian varieties, the Ekedahl-Oort stratification and Deligne-Lusztig varieties.

### 2.1 The Dieudonné theory over a perfect field

We fix once and for all a rational prime $p$. Let $k$ be a perfect field of characteristic $p$. We denote by $W(k)$ the ring of Witt vectors with coefficients in $k$. We define a ring $\mathbb{E}=\mathbb{E}_{k}$ by the $p$-adic completion of

$$
\begin{equation*}
W(k)[\mathcal{F}, \mathcal{V}] /\left(\mathcal{F} \mathcal{V}-p, \mathcal{V} \mathcal{F}-p, \mathcal{F} a-{ }^{\sigma} a \mathcal{F}, \mathcal{V}^{\sigma} a-a \mathcal{V}, \forall a \in W(k)\right) \tag{6}
\end{equation*}
$$

Here $\sigma$ is the Frobenius map on $W(k)$. A Dieudonné module over $k$ is a left $\mathbb{E}$-module $M$ which is finitely generated as a $W(k)$-module. If $M$ is also free as a $W(k)$-module, we call $M$ a free Dieudonné module.

The covariant Dieudonné theory says that there is a canonical categorical equivalence $\mathbb{D}$ from the category of $p$-torsion finite commutative group schemes (resp. p-divisible groups) over $k$ to the category of Dieudonné modules over $k$ which are of finite length (resp. free as $W(k)$-modules). We write $F$ and $V$ for "Frobenius" and "Verschiebung" on commutative group schemes. The covariant Dieudonné functor $\mathbb{D}$ satisfies $\mathbb{D}(F)=\mathcal{V}$ and $\mathbb{D}(V)=\mathcal{F}$. The dual

Dieudonné module $M^{t}$ is the $W(k)$-module $\operatorname{Hom}_{W(k)}(M, W(k))$ with $\mathcal{F}$ and $\mathcal{V}$-operators defined by $(\mathcal{F} f)(x)={ }^{\sigma} f(\mathcal{V} x)$ and $(\mathcal{V} f)(x)=\sigma^{\sigma^{-1}} f(\mathcal{F} x)$ for any $f \in \operatorname{Hom}_{W(k)}(M, W(k))$ and $x \in M$. For an abelian variety $Y$ over $k$, we have a free Dieudonné module $\mathbb{D}(Y):=\mathbb{D}\left(Y\left[p^{\infty}\right]\right)$. The Dieudonné module $\mathbb{D}\left(Y^{t}\right)$ of the dual abelian variety $Y^{t}$ is canonically isomorphic to $\mathbb{D}(Y)^{t}$.

Let $M$ be a free Dieudonné module over $k$. A quasi-polarization on $M$ is a non-degenerate $W(k)$-bilinear alternating form

$$
\begin{equation*}
\langle,\rangle: M \otimes_{W(k)} M \rightarrow W(k) \tag{7}
\end{equation*}
$$

satisfying $\langle\mathcal{F} x, y\rangle={ }^{\sigma}\langle x, \mathcal{V} y\rangle$. A quasi-polarization is called principal if it is a perfect pairing. By [23, p.101], a polarization $\lambda$ on an abelian variety $Y$ induces a quasi-polarization $\langle,\rangle_{\lambda}$ on $\mathbb{D}(Y)$; moreover $\lambda$ is $p$-principal if and only if $\langle,\rangle_{\lambda}$ is principal.

Two free Dieudonné modules $M$ and $N$ are said to be isogenous if there exists an injective $\mathbb{E}$-homomorphism from $M$ to $N$ with torsion cokernel. A free Dieudonné module $M$ is called supersingular (resp. superspecial) if $M$ is isogenous (resp. isomorphic) to $\mathbb{E}_{1,1}^{\oplus g}$ over an algebraically closed field, where $\mathbb{E}_{1,1}:=\mathbb{E} / \mathbb{E}(\mathcal{F}-\mathcal{V})$. For a free Dieudonné module $M$, the $a$-number $a(M)$ of $M$ is defined to be $\operatorname{dim}_{k} M /(\mathcal{F}, \mathcal{V}) M$. We have $a(M)=g$ if and only if $M$ is superspecial ([18], p. 32).

An abelian variety $Y$ over $k$ is said to be supersingular (resp. superspecial) if the Dieudonné module $\mathbb{D}(Y)$ is supersingular (resp. superspecial). An abelian variety $Y$ is supersingular if and only if there is an isogeny from $E^{g}$ to $Y$ over an algebraically closed field (cf. [25], Theorem 4.2 and [24], Theorem 6.2), where $E$ is a supersingular elliptic curve. For $g \geq 2$, an abelian variety $Y$ is superspecial if and only if there is an isomorphism between $Y$ and $E^{g}$ over an algebraically closed field (this condition does not depend on the choice of $E$, see [24], Theorem 6.2 and [29], Theorem 3.5).

## $2.2 \quad \alpha$-groups

Let $S$ be any scheme. A locally free finite group scheme $G$ over $S$ is called an $\alpha$-group if both $F_{G / S}: G \rightarrow G^{(p)}$ and $V_{G / S}: G^{(p)} \rightarrow G$ are zero.

For $\alpha$-groups, the covariant Dieudonné functor is extended as follows: there is an equivalence of categories from the category of $\alpha$-groups over $S$ to the category of locally free sheaves of finite rank on $S$, which is defined by composing the Cartier dual functor and the anti-equivalence obtained in [15], Proposition 2.2. Also see [17], Corollary 2.6 or [18], 2.4. Let $G$ be an $\alpha$-group over $S$ and let $\mathcal{L}$ be the associated locally free sheaf on $S$. Then the locally free sheaf associated to the Cartier dual $G^{D}$ is isomorphic to the locally free sheaf $\operatorname{Hom}\left(\mathcal{L}, \mathcal{O}_{S}\right)$.

### 2.3 Descent of polarizations

Let $(Z, \mu)$ be a polarized abelian scheme over $S$ and set $G:=\operatorname{Ker} \mu$. Note that $\mu$ induces an isomorphism $\imath: G \rightarrow G^{D}$ (cf. [18], 3.7). Assume $G$ is an $\alpha$-group.

Associated to $G$, we have a locally free sheaf $\mathcal{L}$. Let $\jmath$ be the isomorphism $\mathcal{L} \rightarrow \mathcal{H o m}\left(\mathcal{L}, \mathcal{O}_{S}\right)$ induced by $\imath$, which gives an alternating perfect pairing on $\mathcal{L}$. Let $\rho: Z \rightarrow Y$ be an isogeny of abelian schemes and set $H=\operatorname{Ker} \rho$. Assume $H \subset G$. Then $H$ is also an $\alpha$-group. As shown in the proof of [18], 3.7, Lemma, $\mu$ descends to a polarization on $Y$ if and only if the composition $H \subset G \xrightarrow{\imath} G^{D} \rightarrow H^{D}$ is zero. Let $\mathcal{I}$ be the locally free subsheaf of $\mathcal{L}$ associated to $H$.

Lemma 2.3.1. $\mu$ descends to a polarization on $Y$ if and only if $\mathcal{I}$ is totally isotropic in $\mathcal{L}$.
Proof. Paraphrasing the condition that $H \subset G \xrightarrow{\imath} G^{D} \rightarrow H^{D}$ is zero, we have that the composition $\mathcal{I} \subset \mathcal{L} \xrightarrow{\boldsymbol{J}} \mathcal{H o m}\left(\mathcal{L}, \mathcal{O}_{S}\right) \rightarrow \mathcal{H o m}\left(\mathcal{I}, \mathcal{O}_{S}\right)$ is zero. This is nothing but the condition that $\mathcal{I}$ is totally isotropic in $\mathcal{L}$.

### 2.4 Minimal isogenies

Recall [17], Lemma 1.3:
Lemma 2.4.1. Let $k$ be a perfect field of characteristic $p$. For a supersingular Dieudonné module over $k$, there is a biggest superspecial Dieudonné module $S_{0}(M)$ contained in $M$, and dually there exists a smallest superspecial Dieudonné module $S^{0}(M)$ in $M \otimes \operatorname{frac} W(k)$ containing $M$, where $\operatorname{frac}(W(k))$ denotes the fractional field of $W(k)$.

Let $K$ be an arbitrary field of characteristic $p$. We denote by $K^{\text {pf }}$ the perfect hull of $K$. For supersingular $p$-divisible groups $\mathcal{G}$ and $\mathcal{H}$ over $K$, an isogeny $\mathcal{H} \rightarrow \mathcal{G}$ over $K$ is called minimal if the induced isogeny $\mathbb{D}\left(\mathcal{H} \otimes K^{\mathrm{pf}}\right) \rightarrow \mathbb{D}\left(\mathcal{G} \otimes K^{\mathrm{pf}}\right)$ is isomorphic to the inclusion $S_{0}(M) \rightarrow M$ with $M=\mathbb{D}\left(\mathcal{G} \otimes K^{\mathrm{pf}}\right)$. We also recall [18], 1.8:
Lemma 2.4.2. For a supersingular abelian variety $Y$ over $K$, there exists a superspecial abelian variety $Z$ over $K$ and a $K$-isogeny $\rho: Z \rightarrow Y$ such that for any superspecial abelian variety $Z^{\prime}$ over $K$ and any $K$-isogeny $\rho^{\prime}: Z^{\prime} \rightarrow Y$, there is a unique $K$-isogeny $\phi: Z^{\prime} \rightarrow Z$ such that $\rho^{\prime}=\rho \circ \phi$. (The isogeny $\rho$ is also called a minimal isogeny.)

### 2.5 The Ekedahl-Oort stratification

The main reference for the EO-stratification is [27]. For a formulation in terms of Weyl groups, see [8], [19] and [20].
Definition 2.5.1. (1) A finite locally free commutative group scheme $G$ over $\mathbb{F}_{p}$-scheme $S$ is said to be a $\mathrm{BT}_{1}$ over $S$ if it is annihilated by $p$ and $\operatorname{Im}\left(V: G^{(p)} \rightarrow G\right)=\operatorname{Ker}\left(F: G \rightarrow G^{(p)}\right)$.
(2) Assume $k$ is perfect. Let $G$ be a $\mathrm{BT}_{1}$ over $k$. A symmetry of $G$ is an isomorphism from $G$ to its Cartier dual $G^{D}$. A symmetry $\imath$ is called a polarization if the bilinear form $\langle\rangle:, \mathbb{D}(G) \otimes_{k} \mathbb{D}(G) \rightarrow k$ induced by $\imath$ is alternating. Such a pair $(G, \imath)$ is called a polarized $\mathrm{BT}_{1}$.

Recall the classification of polarized $\mathrm{BT}_{1}$ 's.
Theorem 2.5.2. Let $k$ be an algebraically closed field. There is a canonical bijection

$$
\mathcal{E}: \quad\left\{\text { polarized } \mathrm{BT}_{1} \text { over } k\right\} / \simeq \longrightarrow \sim{ }^{I} W_{g} .
$$

Remark 2.5.3. This classification was obtained by Oort [27], (9.4) and MoonenWedhorn [20], (5.4), also see Moonen [19]. Instead of ${ }^{I} W_{g}$, Oort used the set of elementary sequences (or symmetric final sequences), see below for the definition of them. The above formulation in terms of Weyl groups is due to Moonen-Wedhorn.

A symmetric final sequence of length $2 g$ is a map

$$
\psi: \quad\{0, \ldots, 2 g\} \longrightarrow\{0, \ldots, g\}
$$

such that $\psi(i-1) \leq \psi(i) \leq \psi(i-1)+1$ for $1 \leq i \leq 2 g$ with $\psi(0)=0$ and $\psi(2 g-i)=g-i+\psi(i)$. To each element $w$ of ${ }^{I} W_{g}$, we associate a symmetric final sequence $\psi_{w}$ defined by

$$
\begin{equation*}
\psi_{w}(i)=\sharp\{a \in\{1, \ldots, i\} \mid w(a)>g\} . \tag{8}
\end{equation*}
$$

This correspondence gives a bijection from ${ }^{I} W_{g}$ to the set of symmetric final sequences of length $2 g$. An elementary sequence of length $g$ is the restriction of a symmetric final sequence of length $2 g$ to $\{1, \ldots, g\}$. Clearly to give an elementary sequence of length $g$ is equivalent to giving a symmetric final sequence of length $2 g$.

Lemma 2.5.4. For $w \in{ }^{I} W_{g}$, we have $w \in{ }^{I} W_{g}^{[c]}$ if and only if $\psi_{w}(g-c)=0$.
Proof. If $w \in{ }^{I} W_{g}^{[c]}$, then $w(i)=i$ for $i \leq g-c$ by definition; hence we obtain $\psi_{w}(g-c)=0$ by (8). Conversely assume $\psi_{w}(g-c)=0$. Then we have $w(i) \leq g$ for all $i \leq g-c$. Since $w \in{ }^{I} W_{g}$, i.e., $w^{-1}(1)<w^{-1}(2)<\cdots<w^{-1}(g)$, we have $w(i)=i$ for all $i \leq g-c$.

Let us recall the definition of the map $\mathcal{E}$ in Theorem 2.5.2. Let $G$ be a polarized $\mathrm{BT}_{1}$ over an algebraically closed field $k$ and let $N$ be the Dieudonné module of $G$. We define an operator $\mathcal{V}^{-1}$ on the set of Dieudonné submodules $N^{\prime}$ of $N$ by

$$
\begin{equation*}
\mathcal{V}^{-1} N^{\prime}:=\mathcal{V}^{-1}\left(N^{\prime} \cap \mathcal{V}(N)\right) \tag{9}
\end{equation*}
$$

and inductively we define a Dieudonné submodule $s N^{\prime}$ of $N$ for any word $s$ of $\mathcal{F}$ and $\mathcal{V}^{-1}$. It was shown in [27], (2.4) that there exists a unique $w \in{ }^{I} W_{g}$ satisfying $\operatorname{rk}(\mathcal{F} s N)=\psi_{w}(\operatorname{rk} s N)$ and $\operatorname{rk}\left(\mathcal{V}^{-1} s N\right)=g+\operatorname{rk} s N-\psi_{w}(\operatorname{rk} s N)$ for any word $s$. Then we define $\mathcal{E}(G)=w$.

Let $G$ be a polarized $\mathrm{BT}_{1}$ over an algebraically closed field $k$. Let $w=\mathcal{E}(G)$ and put $\psi:=\psi_{w}$. By [27], (9.4), we can express $N=\mathbb{D}(G)$ as follows:

$$
\begin{equation*}
N=\bigoplus_{i=1}^{2 g} k b_{i} \tag{10}
\end{equation*}
$$

with the operators $\mathcal{F}$ and $\mathcal{V}$ defined by

$$
\begin{gather*}
\mathcal{F}\left(b_{i}\right):= \begin{cases}b_{\psi(i)} & \text { if } w(i)>g, \\
0 & \text { otherwise },\end{cases}  \tag{11}\\
\mathcal{V}\left(b_{j}\right):= \begin{cases}b_{i} & \text { if } j=g+i-\psi(i) \text { with } w(i) \leq g \text { and } w(j) \leq g, \\
-b_{i} & \text { if } j=g+i-\psi(i) \text { with } w(i) \leq g \text { and } w(j)>g, \\
0 & \text { otherwise }\end{cases} \tag{12}
\end{gather*}
$$

and the polarization $\langle$,$\rangle defined by$

$$
\left\langle b_{i}, b_{2 g+1-j}\right\rangle= \begin{cases}1 & \text { if } \quad i=j \quad \text { and } \quad w(i)>g  \tag{13}\\ -1 & \text { if } i=j \quad \text { and } \quad w(i) \leq g \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

We shall use the following:
Lemma 2.5.5. (1) $\mathcal{F} N$ has a basis $\left\{b_{1}, \ldots, b_{g}\right\}$ and
(2) $\mathcal{V} N$ has a basis $\left\{b_{w^{-1}(1)}, \ldots, b_{w^{-1}(g)}\right\}$.

Proof. Obvious from (11) and (12).
For $w \in{ }^{I} W_{g}$, the Ekedahl-Oort stratum $\mathcal{S}_{w}$ is defined to be the subset of $\mathcal{A}_{g}$ consisting of points $y \in \mathcal{A}_{g}$ where $y$ comes over some field from a principally polarized abelian variety $A_{y}$ such that $\mathcal{E}\left(A_{y}[p]\right)=w$, see [27], (5.11). As shown in [27], (3.2), $\mathcal{S}_{w}$ is locally closed in $\mathcal{A}_{g}$; we consider this as a locally closed subscheme by giving it the reduced induced scheme structure.

Recall the result of Ekedahl and van der Geer:
Theorem 2.5.6 ([8], Theorem 11.5). Assume $w \in{ }^{I} W^{(c)}$ with $c>\lfloor g / 2\rfloor$. Then $\mathcal{S}_{w}$ is irreducible.

Remark 2.5.7. Let $w \in{ }^{I} W^{(c)}$. By Lemma 2.5.4 the condition $c \leq\lfloor g / 2\rfloor$ is equivalent to $\psi_{w}(\lfloor(g+1) / 2\rfloor)=0$. This is also equivalent to that $\mathcal{S}_{w}$ is contained in the supersingular locus, see [5], (3.7), Step 2 and [11]. Also see Proposition 3.1.5 below.

### 2.6 Flag varieties and Deligne-Lusztig varieties

We recall the precise definitions of flag varieties and Deligne-Lusztig varieties used in this paper.

Let $\left(L_{0},\langle\rangle,\right)$ and $\mathrm{P}_{0}$ be as in $\S 1$. Let $\mathbb{F}$ be a finite field containing $\mathbb{F}_{p^{2}}$. Let $\mathfrak{X}$ be the functor from the category of $\mathbb{F}$-schemes to the category of sets, sending $S$ to the set of totally isotropic locally free subsheaves of rank $c$ of $\pi^{*} L_{0}$, where $\pi: S \rightarrow \operatorname{Spec}(\mathbb{F}) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p^{2}}\right)$. It is known that $\mathfrak{X}$ is representable. We define the flag variety $\mathrm{X}\left(=\mathrm{X}_{\mathbb{F}}\right)$ to be the scheme representing $\mathfrak{X}$. It is known that X is
regular and projective. For any algebraically closed field $k$ over $\mathbb{F}$, there exists a canonical bijection from $\mathrm{X}(k)$ to the set of parabolic subgroups of the form ${ }^{h}\left(\mathrm{P}_{0} \otimes k\right):=h\left(\mathrm{P}_{0} \otimes k\right) h^{-1}$ for some $h \in \operatorname{Sp}\left(L_{0}\right)(k)$, by sending a totally isotopic subspace of $L_{0} \otimes k$ to its stabilizer group. Note that for $h \in \operatorname{Sp}\left(L_{0}\right)(k)$ we have ${ }^{h}\left(\mathrm{P}_{0} \otimes k\right)=\mathrm{P}_{0} \otimes k$ if and only if $h \in \mathrm{P}_{0}(k)$.

Let $w^{\prime}$ be an element of $\bar{W}_{c}$. Let $K$ be a field containing $\mathbb{F}$. Let $x, y \in \mathrm{X}(K)$ and let $\mathrm{P}, \mathrm{Q}$ be the parabolic subgroups of $\operatorname{Sp}\left(L_{0} \otimes K\right)$ stabilizing $x$ and $y$ respectively. We say $x$ and $y$ are in relative position $w^{\prime}$ if over an algebraic closure $k$ of $K$ there exists an $h \in \operatorname{Sp}\left(L_{0}\right)(k)$ such that we have ${ }^{h}(\mathrm{P} \otimes k)=\mathrm{P}_{0} \otimes k$ and ${ }^{h}(\mathrm{Q} \otimes k)=v^{\prime}\left(\mathrm{P}_{0} \otimes k\right)$ for a lift $v^{\prime} \in W_{c}$ of $w^{\prime}$. We define $\mathrm{X}\left(w^{\prime}\right)\left(=\mathrm{X}\left(w^{\prime}\right)_{\mathbb{F}}\right)$ to be the subset of X consisting of points $x \in \mathrm{X}$ such that $x$ and $\operatorname{Fr}(x)$ are in relative position $w^{\prime}$, where Fr is the square of the absolute Frobenius on X. It is known that $\mathrm{X}\left(w^{\prime}\right)$ is locally closed in X ; we consider this as a locally closed subscheme of X by giving it the reduced induced scheme structure. We call $\mathrm{X}\left(w^{\prime}\right)$ the Deligne-Lusztig variety related to $w^{\prime}$. By the same argument as in [6], 1.3, one can check that $\mathrm{X}\left(w^{\prime}\right)$ is regular.

## 3 Proof of the main results

The substantial part of the proof is $\S 3.1$. Here we associate a "flag" (i.e., a maximal totally isotropic subspace in a symplectic vector space) to each principally quasi-polarized Dieudonné module $M$ over an algebraically closed field under the condition $c \leq\lfloor g / 2\rfloor$, and describe the condition $\mathfrak{r}(\mathcal{E}(M / p M))=w^{\prime}$ in terms of the flag. In $\S 3.2$ we review a classification of polarizations on the superspecial abelian varieties by making use of some arithmetic of quaternion unitary groups. In $\S 3.3$ we introduce the moduli space $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ of certain isogenies of polarized supersingular abelian varieties and describe $\mathcal{J}_{w^{\prime}, n}$ in terms of $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$; moreover by using the result of $\S 3.1$ we show that $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ is isomorphic to the DeligneLusztig variety $\mathrm{X}\left(w^{\prime}\right)$. $\S 3.4$ is just a paraphrase of the result of $\S 3.3$. In the last subsection $\S 3.5$ we enumerate the irreducible components of $\mathcal{J}_{w^{\prime}}$ and show the reducibility of Ekedahl-Oort strata contained in the supersingular locus.

### 3.1 Principally quasi-polarized Dieudonné modules with $c \leq\lfloor g / 2\rfloor$

Let $k$ be an algebraically closed field of characteristic $p$. Let $M$ be a principally quasi-polarized Dieudonné module of genus $g$ over $k$. Set $N=M / p M$. For any Dieudonné submodule $T$ of $M$, we write $\bar{T}$ for the $k[\mathcal{F}, \mathcal{V}]$-submodule $T / T \cap p M$ of $N$. For a $k[\mathcal{F}, \mathcal{V}]$-submodule $S$ of $N$, we define a Dieudonné submodule $\langle\langle S\rangle\rangle$ of $M$ by

$$
\langle\langle S\rangle\rangle=\{x \in M \mid(x \bmod p) \in S\},
$$

and let $\mathcal{V}^{-1} S$ be as defined in (9). For an $\mathbb{E}_{k}$-submodule $M^{\prime}$ of $M$ we denote by $\mathcal{V}^{-1} M^{\prime}$ the $\mathbb{E}_{k}$-module $\left\{m \in M \otimes_{W(k)} \operatorname{frac}(W(k)) \mid \mathcal{V} m \in M^{\prime}\right\}$. Then we have $\left\langle\left\langle\mathcal{V}^{-1} S\right\rangle\right\rangle=\mathcal{V}^{-1}\langle\langle S\rangle\rangle \cap M$ and $\langle\langle\mathcal{F} S\rangle\rangle=\mathcal{F}\langle\langle S\rangle\rangle+p M$, see [11], Lemma 6.2.

Lemma 3.1.1. Let $S$ be a $k[\mathcal{F}, \mathcal{V}]$-submodule of $N$ such that $\mathcal{V} N \subset S$. Then we have $\left\langle\left\langle\mathcal{V}^{-1} \mathcal{F} S\right\rangle\right\rangle=\mathcal{V}^{-1} \mathcal{F}\langle\langle S\rangle\rangle \cap M$.

Proof. We have $\left\langle\left\langle\mathcal{V}^{-1} \mathcal{F} S\right\rangle\right\rangle=\mathcal{V}^{-1}\langle\langle\mathcal{F} S\rangle\rangle \cap M=\mathcal{V}^{-1}(\mathcal{F}\langle\langle S\rangle\rangle+p M) \cap M$. Clearly $\mathcal{V} N \subset S$ implies $\mathcal{V} M \subset\langle\langle S\rangle\rangle$; hence $p M \subset \mathcal{F}\langle\langle S\rangle\rangle$. Thus we obtain $\left\langle\left\langle\mathcal{V}^{-1} \mathcal{F} S\right\rangle\right\rangle=$ $\mathcal{V}^{-1} \mathcal{F}\langle\langle S\rangle\rangle \cap M$.

Lemma 3.1.2. Assume there exists a $k[\mathcal{F}, \mathcal{V}]$-submodule $S$ of $N$ such that $\mathcal{V} N \subset S$ and $\mathcal{V}^{-1} \mathcal{F} S=S$. Then $\langle\langle S\rangle\rangle$ is a superspecial Dieudonné module, and therefore $M$ is supersingular.

Proof. We have $\langle\langle S\rangle\rangle=\left\langle\left\langle\mathcal{V}^{-1} \mathcal{F} S\right\rangle\right\rangle=\mathcal{V}^{-1} \mathcal{F}\langle\langle S\rangle\rangle \cap M$ by Lemma 3.1.1. From this, we have $\mathcal{V}\langle\langle S\rangle\rangle \subset \mathcal{F}\langle\langle S\rangle\rangle$; then the $a$-number $\operatorname{dim}_{k}\langle\langle S\rangle\rangle /(F, V)\langle\langle S\rangle\rangle$ is equal to $g$. Hence $\langle\langle S\rangle\rangle$ is superspecial. Then $M$ is supersingular, since $\mathcal{V} M \subset\langle\langle S\rangle \subset$ $M$.

From the obvious inclusion $\left(V^{-1} F\right) N \subset N$, we have a descending filtration

$$
\begin{equation*}
\cdots \subset\left(\mathcal{V}^{-1} \mathcal{F}\right)^{2} N \subset\left(\mathcal{V}^{-1} \mathcal{F}\right) N \subset N . \tag{14}
\end{equation*}
$$

Since $N$ is of finite length, the filtration is stable. Hence $\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$ is defined.
Lemma 3.1.3. Assume that $M$ is supersingular and $\mathcal{V} M \subset S_{0}(M) \subset M$. Then we have $\overline{S_{0}(M)}=\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$.

Proof. By Lemma 3.1.1, we have $\left\langle\left\langle\mathcal{V}^{-1} \mathcal{F} \overline{S_{0}(M)}\right\rangle\right\rangle=\mathcal{V}^{-1} \mathcal{F} S_{0}(M) \cap M=S_{0}(M)$; hence $\mathcal{V}^{-1} \mathcal{F} \overline{S_{0}(M)}=\overline{S_{0}(M)}$. Applying $\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty}$ to the both sides of $\overline{S_{0}(M)} \subset$ $N$, we obtain $\overline{S_{0}(M)} \subset\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$.

Note $\mathcal{V} N \subset \overline{S_{0}(M)} \subset\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$ and $\left(\mathcal{V}^{-1} \mathcal{F}\right)\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N=\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$. Hence $\left\langle\left\langle\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N\right\rangle\right\rangle$ is superspecial (Lemma 3.1.2). Since $S_{0}(M)$ is the largest superspecial Dieudonné submodule of $M$, we have $\left\langle\left\langle\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N\right\rangle\right\rangle \subset S_{0}(M)$; hence $\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N \subset \overline{S_{0}(M)}$.

Let $w=\mathcal{E}(N)$ and set $\psi=\psi_{w}$. We choose a basis $\left\{b_{1}, \ldots, b_{2 g}\right\}$ of $N$ as satisfying (11), (12) and (13). Let $N_{i}$ be the subspace of $N$ generated by $b_{1}, \ldots, b_{i}$. Then we have a filtration

$$
\begin{equation*}
N_{0} \subset \cdots \subset N_{2 g} . \tag{15}
\end{equation*}
$$

Note $\mathcal{F} N_{i}=N_{\psi(i)}$ and $\mathcal{V}^{-1} N_{i}=N_{g+i-\psi(i)}$.
Lemma 3.1.4. Assume $w \in{ }^{I} W_{g}^{(c)}$. Then we have
(1) $\mathcal{V} N \subset N_{2 g-c}$;
(2) $\mathcal{V}^{-1} \mathcal{F} N_{2 g-c}=N_{2 g-c}$ if $c \leq\lfloor g / 2\rfloor$.

In particular if $c \leq\lfloor g / 2\rfloor$, then $\left\langle\left\langle N_{2 g-c}\right\rangle\right\rangle$ is superspecial by Lemma 3.1.2.

Proof. (1) It suffices to show that $b_{i} \notin \mathcal{V} N \Leftarrow i>2 g-c$. Clearly we have the equivalences

$$
b_{i}, \ldots, b_{2 g} \notin \mathcal{V} N \Leftrightarrow w(i), \ldots, w(2 g)>g \Leftrightarrow w(1), \ldots, w(2 g+1-i) \leq g .
$$

Since $w^{-1}(1)<\cdots<w^{-1}(g)$, the last condition is nothing but $w(j)=j$ for $1 \leq j \leq 2 g+1-i$, namely $w \in{ }^{I} W_{g}^{[2 g+1-i]}$. This condition is equivalent to $i>2 g-c$.
(2) By $c \leq g-c$, we have $\psi_{w}(2 g-c)=g-c+\psi_{w}(c)=g-c$; hence we have $\mathcal{F} N_{2 g-c}=N_{g-c}$. Since $\psi_{w}(g-c)=0$, we have $\mathcal{V}^{-1} N_{g-c}=N_{g+(g-c)-\psi_{w}(g-c)}=$ $N_{2 g-c}$.

Proposition 3.1.5. Assume $c \leq\lfloor g / 2\rfloor$. Let $M$ be a principally quasi-polarized Dieudonné module over $k$ and set $w=\mathcal{E}(N) \in{ }^{I} W_{g}$. The following conditions are equivalent:
(1) $w \in{ }^{I} W_{g}^{(c)}$,
(2) $M$ is supersingular and $S^{0}(M) / S_{0}(M)$ is a $k$-vector space of dimension 2c. (In this case we have $S_{0}(M)=\left\langle\left\langle N_{2 g-c}\right\rangle\right\rangle$. .)

Proof. Let us introduce two conditions (1') $w \in{ }^{I} W_{g}^{[c]}$ and (2') $M$ is supersingular and $S^{0}(M) / S_{0}(M)$ is a $k$-vector space of dimension $\leq 2 c$. It suffices to show $(1) \Rightarrow\left(2^{\prime}\right)$ and $(2) \Rightarrow\left(1^{\prime}\right)$.
$(1) \Rightarrow\left(2^{\prime}\right)$ : Note $\left\langle\left\langle N_{2 g-c}\right\rangle\right\rangle$ is superspecial by Lemma 3.1.4; hence we have $\left\langle\left\langle N_{2 g-c}\right\rangle\right\rangle \subset S_{0}(M)$. Lemma 3.1.4 (1) implies $\mathcal{V} M \subset\left\langle\left\langle N_{2 g-c}\right\rangle\right\rangle$ and therefore $\mathcal{V} M \subset S_{0}(M)$ holds. Since $\mathcal{V} S^{0}(M)$ is the smallest superspecial Dieudonné module containing $\mathcal{V} M$, we have $\mathcal{V} S^{0}(M) \subset S_{0}(M)$. Thus $S^{0}(M) / S_{0}(M)$ is a $k$-vector space. Since

$$
\operatorname{dim} M / S_{0}(M) \leq \operatorname{dim} N / N_{2 g-c} \leq c
$$

we obtain $\operatorname{dim} S^{0}(M) / S_{0}(M) \leq 2 c$.
$(2) \Rightarrow\left(1^{\prime}\right)$ : Since $S^{0}(M) / \overline{S_{0}}(M)$ is a $k$-vector space, we have

$$
\mathcal{V} M \subset \mathcal{V} S^{0}(M) \subset S_{0}(M) \subset M
$$

Hence $\overline{S_{0}(M)}=\left(\mathcal{V}^{-1} \mathcal{F}\right)^{\infty} N$ by Lemma 3.1.3. Note $\operatorname{dim} \overline{S_{0}(M)}=2 g-c$. Then the dimension of $\mathcal{F} \overline{S_{0}(M)}$ is greater than or equal to $g-c$. Since $\mathcal{F}^{2} \overline{S_{0}(M)}=$ $p \overline{S_{0}(M)}=0$, we have $\psi_{w}(g-c)=0$. This is equivalent to $w \in{ }^{I} W_{g}^{[c]}$ by Lemma 2.5.4.

Assume $c \leq\lfloor g / 2\rfloor$. Let $w \in{ }^{I} W_{g}^{(c)}$ and let $v$ be the element of $W_{c}$ determined by $v(i)=w(g-c+i)-(g-c)$ for all $1 \leq i \leq c$. Let $M$ be any principally quasi-polarized Dieudonné module with $\mathcal{E}(M / p M)=w$. Consider the subspace $L:=\mathcal{V} S^{0}(M) / \mathcal{V} S_{0}(M)$ of $N / \overline{\mathcal{V} S_{0}(M)}$. We put

$$
\begin{equation*}
b_{i}^{\prime}=b_{g-c+i} \quad \bmod \overline{\mathcal{V} S_{0}(M)} \tag{16}
\end{equation*}
$$

for $1 \leq i \leq 2 c$. Then $L$ is a $k$-vector space of dimension $2 c$ with a basis $\left\{b_{1}^{\prime}, \ldots, b_{2 c}^{\prime}\right\}$; moreover the quasi-polarization on $S^{0}(M)$ induces a perfect alternating pairing on $L$, which satisfies

$$
\left\langle b_{i}^{\prime}, b_{2 c+1-j}^{\prime}\right\rangle=\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \quad \text { and } \quad v(i)>c  \tag{17}\\
-1 & \text { if } \quad i=j \quad \text { and } \quad v(i) \leq c \\
0 & \text { if } \quad i \neq j
\end{array}\right.
$$

Consider the two maximal totally isotropic subspaces $C=\mathcal{V} M / \mathcal{V} S_{0}(M)$ and $D=\mathcal{F} M / \mathcal{V} S_{0}(M)$ of $L$. Let $\mathrm{P}(M)$ (resp. $\mathrm{Q}(M)$ ) be the parabolic subgroup of $\mathrm{Sp}(L)$ stabilizing $C$ (resp. $D$ ).

Proposition 3.1.6. Assume $c \leq\lfloor g / 2\rfloor$. Let $w^{\prime} \in \bar{W}_{c}^{\prime}$. For a principally quasi-polarized Dieudonné module $M$ with $\mathcal{E}(M / p M) \in{ }^{I} W_{g}^{(c)}$, the following are equivalent:
(1) we have $\mathfrak{r}(\mathcal{E}(M / p M))=w^{\prime}$, see (4) for the definition of $\mathfrak{r}$,
(2) there exists an isomorphism $u: \operatorname{Sp}(L) \simeq \operatorname{Sp}\left(L_{0} \otimes k\right)$ such that $u(\mathrm{P}(M))=$ $\mathrm{P}_{0} \otimes k$ and $u(\mathrm{Q}(M))=v^{\prime}\left(\mathrm{P}_{0} \otimes k\right)$ for a lift $v^{\prime} \in W_{c}$ of $w^{\prime}$.

Proof. Suppose (1). Put $w=\mathcal{E}(M / p M)$. Let $v$ be as above, i.e., the element of $W_{c}$ determined by $v(i)=w(g-c+i)-(g-c)$ for all $1 \leq i \leq c$. Note $v$ is a lift of $w^{\prime}$ by the definition of $\mathfrak{r}$. It follows from Lemma 2.5.5 and (16) that $C$ has a basis $\left\{b_{v^{-1}(1)}^{\prime}, \ldots, b_{v^{-1}(c)}^{\prime}\right\}$ and $D$ has a basis $\left\{b_{1}^{\prime}, \ldots, b_{c}^{\prime}\right\}$. Hence there exists an isomorphism $u: \operatorname{Sp}(L) \simeq \operatorname{Sp}\left(L_{0} \otimes k\right)$ such that $u(\mathrm{P}(M))=\mathrm{P}_{0} \otimes k$ and $u(\mathrm{Q}(M))={ }^{v}\left(\mathrm{P}_{0} \otimes k\right)$.

Conversely suppose (2). Put $w_{0}^{\prime}:=\mathfrak{r}(\mathcal{E}(M / p M))$. By (1) $\Rightarrow$ (2), there exists an isomorphism $u_{0}: \operatorname{Sp}(L) \simeq \operatorname{Sp}\left(L_{0} \otimes k\right)$ such that $u_{0}(\mathrm{P}(M))=\mathrm{P}_{0} \otimes k$ and $u_{0}(\mathrm{Q}(M))=v_{0}^{\prime}\left(\mathrm{P}_{0} \otimes k\right)$ for a lift $v_{0}^{\prime} \in W_{c}$ of $w_{0}^{\prime}$. Since any automorphism of $\operatorname{Sp}\left(L_{0} \otimes k\right)$ is an inner automorphism, there exists $h \in \operatorname{Sp}\left(L_{0}\right)(k)$ such that $\operatorname{Ad} h=u_{0} \circ u^{-1}$. Then ${ }^{h}\left(\mathrm{P}_{0} \otimes k\right)=\mathrm{P}_{0} \otimes k$ and ${ }^{h v^{\prime}}\left(\mathrm{P}_{0} \otimes k\right)=v_{0}^{\prime}\left(\mathrm{P}_{0} \otimes k\right)$. Hence we have $v^{\prime} \in \mathrm{P}_{0}(k) v_{0}^{\prime} \mathrm{P}_{0}(k)$, which means $w^{\prime}=w_{0}^{\prime}$.

### 3.2 Polarizations

Let $E$ be a supersingular elliptic curve over $\mathbb{F}_{p}$ whose $\overline{\mathbb{F}_{p}}$-endomorphisms are all defined over $\mathbb{F}_{p^{2}}$, see [26], (4.1) for the existence of such an $E$. We denote by $F$ the Frobenius endomorphism of $E$. Let $\mathcal{O}=\operatorname{End}\left(E \otimes \mathbb{F}_{p^{2}}\right)$ and let $B$ denote $\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}$, which is the quaternion algebra over $\mathbb{Q}$ ramified only at $p$ and $\infty$ over $\mathbb{Q}$. Note $\mathcal{O}$ is a maximal order of $B$. Let $x \mapsto \bar{x}$ denote the main involution of $B$.

We claim that every polarization on $E^{g}$ over $\overline{\mathbb{F}_{p}}$ is defined over $\mathbb{F}_{p^{2}}$. By the definition of polarization (cf. [22], Definition 6.3), we need only prove that all $\overline{\mathbb{F}_{p}}$-homomorphisms from $E^{g}$ to $\left(E^{g}\right)^{t}$ are defined over $\mathbb{F}_{p^{2}}$. Note that the divisor $E^{g-1} \times\{0\}+E^{g-2} \times\{0\} \times E+\cdots+\{0\} \times E^{g-1}$ on $E^{g}$ defines a principal polarization $\eta: E^{g} \simeq\left(E^{g}\right)^{t}$ on $E^{g}$, which is defined over $\mathbb{F}_{p}$. Hence it suffices to
show that all $\overline{\mathbb{F}_{p}}$-endomorphisms of $E^{g}$ are defined over $\mathbb{F}_{p^{2}}$. This follows since all $\overline{\mathbb{F}_{p}}$-endomorphisms of $E$ are defined over $\mathbb{F}_{p^{2}}$.

Let $n$ be a natural number with $\operatorname{gcd}(n, p)=1$, and let $c$ be a non-negative integer with $c \leq\lfloor g / 2\rfloor$. Let $\mathcal{P}_{c, n}$ denote the set of pairs $(\mu, \theta)$ of polarizations $\mu$ and level $n$-structures $\theta$ on $E^{g}$ such that $\operatorname{Ker} \mu \simeq \alpha_{p}^{\oplus 2 c}$. Here $\alpha_{p}$ is the finite group scheme $\operatorname{Ker}\left(F: \mathbb{G}_{a} \rightarrow \mathbb{G}_{a}\right)$. Let $\mathbb{F}$ be the finite field $\mathbb{F}_{p^{2}}(E[n])$. Then every element $(\mu, \theta)$ of $\mathcal{P}_{c, n}$ is defined over $\mathbb{F}$. From now on we write $E$ instead of $E \otimes \mathbb{F}$. For two elements $(\mu, \theta)$ and $\left(\mu^{\prime}, \theta^{\prime}\right)$ of $\mathcal{P}_{c, n}$, we say $(\mu, \theta) \approx\left(\mu^{\prime}, \theta^{\prime}\right)$ if there exists an automorphism $h$ of $E^{g}$ such that $\mu^{\prime}=h^{*} \mu$ and $h \circ \theta^{\prime}=\theta$. We write $\Lambda_{c, n}=\mathcal{P}_{c, n} / \approx$. Note $\Lambda_{c, n}$ is a finite set.

Choose an element $\left(\mu_{0}, \theta_{0}\right)$ of $\Lambda_{c, n}$. Set $\varphi=\eta^{-1} \circ \mu_{0}$, which is an element of $\mathrm{M}_{g}(\mathcal{O})$. We define a quaternion unitary group G over $\mathbb{Z}$ by

$$
\begin{equation*}
\mathrm{G}(R)=\left\{\left.h \in \mathrm{GL}_{g}\left(\mathcal{O} \otimes_{\mathbb{Z}} R\right)\right|^{t} \bar{h} \varphi h=\varphi\right\} \tag{18}
\end{equation*}
$$

for any commutative unitary ring $R$. It follows from [18], 8.3 and 8.4 that for a prime number $l(\neq p)$, there exists a $u_{l} \in \mathrm{GL}_{g}\left(\mathcal{O}_{l}\right)$ such that ${ }^{t} \overline{u_{l}} \varphi_{l} u_{l}=1_{g}$ and there exists a $u_{p} \in \mathrm{GL}_{g}\left(\mathcal{O}_{p}\right)$ such that

$$
{ }^{t} \overline{u_{p}} \varphi_{p} u_{p}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{g-2 c}, \underbrace{\left(\begin{array}{cc}
0 & F  \tag{19}\\
-F & 0
\end{array}\right), \ldots,\left(\begin{array}{cc}
0 & F \\
-F & 0
\end{array}\right)}_{c}) .
$$

Let $K$ denote the open compact subgroup $\prod_{l} G\left(\mathbb{Z}_{l}\right)$ of $G\left(\mathbb{A}^{\infty}\right)$, where $\mathbb{A}^{\infty}$ denotes the finite adele ring. (We remark that $\mathrm{G}\left(\mathbb{Z}_{l}\right)$ is isomorphic to $\mathrm{Sp}_{2 g}\left(\mathbb{Z}_{l}\right)$ for $l \neq p$.) Also $\mathrm{K}_{n}$ is defined to be the kernel of the natural homomorphism from K to $\mathrm{G}(\mathbb{Z} / n \mathbb{Z})$. It is known (cf. [13], $\S 2$ and [18], Ch. 8 and 9.12) that there is a bijection

$$
\begin{equation*}
\alpha: \quad \mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}_{n} \longrightarrow \Lambda_{c, n}, \tag{20}
\end{equation*}
$$

which is defined as follows: for any element $\gamma$ of $\mathrm{G}\left(\mathbb{A}^{\infty}\right)$ there exists an $f \in$ $\mathrm{GL}_{g}(B)$ with $(\operatorname{deg} f, n)=1$ such that $f_{l}=\gamma_{l} \delta_{l}$ for some $\delta_{l} \in \operatorname{Ker}\left(\mathrm{GL}_{g}\left(\mathcal{O}_{l}\right) \rightarrow\right.$ $\left.\mathrm{GL}_{g}\left(\mathcal{O}_{l} / n\right)\right)$; then $\alpha(\gamma)$ is defined to be $\left(f^{*} \mu_{0},\left(\left.f\right|_{E^{g}[n]}\right)^{-1} \circ \theta_{0}\right)$, where we see $f$ as an element of $\operatorname{End}_{\mathbb{Q}}\left(E^{g}\right)^{\times}$with $\operatorname{End}_{\mathbb{Q}}\left(E^{g}\right):=\operatorname{End}\left(E^{g}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$; moreover if $\alpha(\gamma)=(\mu, \theta)$ then we have an isomorphism

$$
\begin{equation*}
\operatorname{Aut}\left(E^{g}, \mu, \theta\right) \longrightarrow \mathrm{G}(\mathbb{Q}) \cap \gamma \mathrm{K}_{n} \gamma^{-1} \tag{21}
\end{equation*}
$$

which is defined by sending $h$ to $f h f^{-1}$.

### 3.3 The moduli space $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$

Assume $g \geq 2$. We retain the notation of $\S 3.2$. We continue to assume $c \leq\lfloor g / 2\rfloor$ and $\operatorname{gcd}(n, p)=1$ and to write $E$ instead of $E \otimes \mathbb{F}$. Let $(\mu, \theta)$ be an element of $\Lambda_{c, n}$. Set $G=\operatorname{Ker} \mu$, which is an $\alpha$-group over $\mathbb{F}$ of rank $p^{2 c}$. We identify $\left(L_{0},\langle\rangle,\right) \otimes \mathbb{F}$ with the symplectic vector space over $\mathbb{F}$ associated to $G$.

Consider the moduli functor $\mathfrak{T}_{\mu, \theta}$ from the category of $\mathbb{F}$-schemes to the category of sets, sending $S$ to the set of isogenies

$$
\begin{equation*}
\rho:\left(E^{g}, \mu, \theta\right) \times_{\mathbb{F}} S \rightarrow(Y, \lambda, \vartheta) \tag{22}
\end{equation*}
$$

as polarized abelian schemes (i.e., $\mu_{S}=\rho^{*} \lambda$ and $\rho \circ \theta_{S}=\vartheta$ ) such that $\lambda$ is a principal polarization.

Lemma 3.3.1. $\mathfrak{T}_{\mu, \theta}$ is represented by an $\mathbb{F}$-scheme $\mathcal{T}_{\mu, \theta}$, and there is an $\mathbb{F}$ isomorphism from $\mathcal{T}_{\mu, \theta}$ to the flag variety $\mathrm{X}=\mathrm{X}_{\mathrm{F}}$.

Proof. To give an element $\rho \in \mathfrak{T}_{\mu, \theta}(S)$ is equivalent to giving an $\alpha$-subgroup $H$ of $G_{S}$ with rk $H=p^{c}$ such that $\mu$ descends to a polarization on $E_{S}^{g} / H$. Associated to $H \subset G_{S}$ of rank $p^{c}$ we have a locally free subsheaf $\mathcal{I}$ of rank $c$ of $\pi^{*} L_{0}$, where $\pi: S \rightarrow \operatorname{Spec}(\mathbb{F}) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p^{2}}\right)$. By Lemma 2.3.1, $\mu$ descends to a polarization on $E_{S}^{g} / H$ if and only if $\mathcal{I}$ is totally isotropic in $\pi^{*} L_{0}$. Thus we obtain an isomorphism $\mathfrak{T}_{\mu, \theta}(S) \simeq \mathrm{X}(S)$, which is functorial on $S$. Thus $\mathfrak{T}_{\mu, \theta}$ is represented by X.

There is a canonical morphism $\Psi$ from $\mathcal{T}_{\mu, \theta}$ to the supersingular locus $\mathcal{W}_{\sigma, n}$ defined by sending $\rho:\left(E^{g}, \mu, \theta\right) \rightarrow(Y, \lambda, \vartheta)$ to $(Y, \lambda, \vartheta)$. Let $w^{\prime}$ be an element of $\bar{W}_{c}^{\prime}$. Let $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ be the subset of $\mathcal{T}_{\mu, \theta}$ consisting of $\rho:\left(E^{g}, \mu, \theta\right) \rightarrow(Y, \lambda, \vartheta)$ with $\mathcal{E}(Y[p]) \in{ }^{I} W_{g}^{(c)}$ and $\mathfrak{r}(\mathcal{E}(Y[p]))=w^{\prime}$. By [27], (3.2), $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ is locally closed in $\mathcal{T}_{\mu, \theta}$; we consider this as a locally closed subscheme in $\mathcal{T}_{\mu, \theta}$ by giving it the reduced induced scheme structure. Let $\mathcal{J}_{w^{\prime}, n}$ be the subset of $\mathcal{A}_{g, n}$ defined by

$$
\mathcal{J}_{w^{\prime}, n}=\bigcup_{\mathfrak{r}(w)=w^{\prime}} \mathcal{S}_{w, n}
$$

Note $\mathcal{J}_{w^{\prime}, n}$ is a locally closed subset of $\mathcal{A}_{g}$; we give it the reduced induced scheme structure.

Proposition 3.3.2. Let $w^{\prime} \in \bar{W}_{c}^{\prime}$ with $c \leq\lfloor g / 2\rfloor$.
(1) For every $(\mu, \theta) \in \Lambda_{c, n}$ there is an isomorphism over $\mathbb{F}$ :

$$
\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \longrightarrow \mathrm{X}\left(w^{\prime}\right)
$$

(2) $\Psi$ induces a finite surjective morphism over $\mathbb{F}$ :

$$
\bar{\Psi}: \quad \coprod_{(\mu, \theta) \in \Lambda_{c, n}} \operatorname{Aut}\left(E^{g}, \mu, \theta\right) \backslash \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \longrightarrow \mathcal{J}_{w^{\prime}, n}
$$

which is bijective on geometric points. If $n \geq 3$, then $\Psi$ induces an isomorphism

$$
\tilde{\Psi}: \quad \coprod_{(\mu, \theta) \in \Lambda_{c, n}} \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \longrightarrow \tilde{\mathcal{J}}_{w^{\prime}, n}
$$

where $\tilde{\mathcal{J}}_{w^{\prime}, n}$ is the normalization of $\mathcal{J}_{w^{\prime}, n}$.

Proof. (1) Let $k$ be an algebraically closed field of characteristic $p$. Let $\rho$ : $\left(E^{g}, \mu, \theta\right) \otimes_{\mathbb{F}} k \rightarrow(Y, \lambda, \vartheta)$ be an element of $\mathcal{T}_{\mu, \theta}(k)$. The element $\rho$ defines an isogeny $M \subset M_{1, k}$ with $M_{1, k}:=M_{1} \otimes W(k)$, where $M=\mathbb{D}(Y)$ and $M_{1}=\mathbb{D}\left(E^{g}\right)$. It follows from Proposition 3.1.5 that if $\rho \in \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)(k)$, then $M \subset M_{1, k}$ is a minimal isogeny. Let $\mathrm{P}(M)$ and $\mathrm{Q}(M)$ be the parabolic subgroups of $\operatorname{Sp}\left(\mathcal{V} M_{1} / \mathcal{V} M_{1}^{t}\right) \otimes k$ stabilizing the maximal totally isotropic subspaces $\mathcal{V} M / \mathcal{V} M_{1, k}^{t}$ and $\mathcal{F} M / \mathcal{V} M_{1, k}^{t}$ respectively. Recall that we identify $L_{0} \otimes \mathbb{F}$ with the locally free sheaf over $\operatorname{Spec}(\mathbb{F})$ associated to $G=\operatorname{Ker} \mu$; then we have a canonical isomorphism $\nu: \operatorname{Sp}\left(L_{0} \otimes \mathbb{F}\right) \simeq \operatorname{Sp}\left(\mathcal{V} M_{1} / \mathcal{V} M_{1}^{t}\right)$. Now we regard $\mathrm{P}(M)$ and $\mathrm{Q}(M)$ as subgroups of $\mathrm{Sp}\left(L_{0} \otimes k\right)$ via $\nu$. Then the isomorphism $\mathcal{T}_{\mu, \theta} \simeq \mathrm{X}$ obtained in Lemma 3.3.1 sends $\rho$ to $\mathrm{P}(M)$. By Proposition 3.1.6 we have $\rho \in \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)(k)$ if and only if there exists an $h \in \operatorname{Sp}\left(L_{0}\right)(k)$ such that ${ }^{h} \mathrm{P}(M)=\mathrm{P}_{0} \otimes k$ and ${ }^{h} \mathrm{Q}(M)={ }^{\prime}\left(\mathrm{P}_{0} \otimes k\right)$ for a lift $v^{\prime} \in W_{c}$ of $w^{\prime}$. Here we used the fact that every automorphism of $\operatorname{Sp}\left(L_{0}\right) \otimes k$ is an inner automorphism. We also have $\operatorname{Fr} \mathrm{P}(M)=\mathrm{Q}(M)$. Hence, identifying $\mathcal{T}_{\mu, \theta}$ with X , we obtain $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)(k)=\mathrm{X}\left(w^{\prime}\right)(k)$ in $\mathrm{X}(k)$. Since both $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ and $\mathrm{X}\left(w^{\prime}\right)$ are reduced locally closed subschemes in X , we have $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)=\mathrm{X}\left(w^{\prime}\right)$ by the Hilbert Nullstellensatz.
(2) Let $T_{n}$ denote the source of $\bar{\Psi}$. First we show that $\bar{\Psi}$ sets up a bijection from $T_{n}(k)$ to $\mathcal{J}_{w^{\prime}, n}(k)$ for any algebraically closed field $k$. By Proposition 3.1.5, for any $(Y, \lambda, \vartheta) \in \mathcal{J}_{w^{\prime}, n}(k)$ we have an isogeny $S_{0}(M) \subset M$ with $M=\mathbb{D}(Y)$ such that $M / S_{0}(M)$ is a $k$-vector space of dimension $c$; by [24], Theorem 6.2 we have a corresponding isogeny $\rho: E^{g} \rightarrow Y$ with $\operatorname{Ker} \rho \simeq \alpha_{p}^{c}$; then setting $\mu=\rho^{*} \lambda$ and $\theta=\left(\left.\rho\right|_{E^{g}[n]}\right)^{-1} \circ \vartheta$, we have a geometric point $\rho:\left(E^{g}, \mu, \theta\right) \rightarrow(Y, \lambda, \vartheta)$ of $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$. Proposition 3.1.5 also says that every element $\rho$ of $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)(k)$ is a minimal isogeny. Hence $\bar{\Psi}$ is bijective on geometric points by Lemma 2.4.2.

By definition $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ is the reduced scheme associated to $\mathcal{T}_{\mu, \theta} \times \mathcal{W}_{\sigma, n} \mathcal{J}_{w^{\prime}, n}$. Since $\Psi: \mathcal{T}_{\mu, \theta} \rightarrow \mathcal{W}_{\sigma, n}$ is proper, the composition

$$
\Psi^{\prime}: \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \hookrightarrow \mathcal{I}_{\mu, \theta} \times \mathcal{W}_{\sigma, n} \mathcal{J}_{w^{\prime}, n} \rightarrow \mathcal{J}_{w^{\prime}, n}
$$

is proper. Clearly $\Psi^{\prime}$ is quasi-finite; hence this is finite. Since $\mathcal{J}_{w^{\prime}, n}$ is noetherian, the induced morphism $\operatorname{Aut}\left(E^{g}, \mu, \theta\right) \backslash \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \rightarrow \mathcal{J}_{w^{\prime}, n}$ is finite. Thus $\bar{\Psi}$ is finite.

Assume $n \geq 3$. Then we have $\operatorname{Aut}\left(E^{g}, \mu, \theta\right)=\{\mathrm{id}\}$. Since $\mathcal{T}_{\mu, \theta}\left(w^{\prime}\right)$ is regular by (1), $\bar{\Psi}$ induces a morphism

$$
\tilde{\Psi}: \quad \coprod_{(\mu, \theta) \in \Lambda_{c, n}} \mathcal{T}_{\mu, \theta}\left(w^{\prime}\right) \longrightarrow \tilde{\mathcal{J}}_{w^{\prime}, n} .
$$

By [10], $\S 8$, Lemme (8.12.10.1), it suffices to check that $\tilde{\Psi}$ is birational, in order to show that $\tilde{\Psi}$ is an isomorphism. Let $(Y, \lambda, \vartheta)$ be the polarized abelian variety with level $n$-structure over a generic point $\operatorname{Spec}(K) \rightarrow \mathcal{J}_{w^{\prime}, n}$. By Lemma 2.4.2 there is an isogeny $\rho:\left(Z, \mu^{\prime}, \theta^{\prime}\right) \rightarrow(Y, \lambda, \vartheta)$ such that $\rho$ is a minimal isogeny. Since $\mathcal{A}_{g, p^{c}, n}$ is a fine moduli space, $\left(Z, \mu^{\prime}, \theta^{\prime}\right)$ can be written as $\left(E^{g}, \mu, \theta\right) \otimes_{\mathbb{F}} K$ for some $(\mu, \theta) \in \Lambda_{c, n}$. Hence by associating $\rho$ to $(Y, \lambda, \vartheta)$, we obtain the inverse morphism of $\tilde{\Psi}$ on generic points. Thus $\tilde{\Psi}$ is birational.

### 3.4 The main theorem

Assume $c \leq\lfloor g / 2\rfloor$. Let $n$ be a natural number with $\operatorname{gcd}(n, p)=1$. Let ( $\mu_{0}, \theta_{0}$ ) be the element of $\Lambda_{c, n}$ chosen in $\S 3.2$. Let $w^{\prime} \in \bar{W}_{c}^{\prime}$. We identify $\mathrm{X}\left(w^{\prime}\right)$ with $\mathcal{T}_{\mu_{0}, \theta_{0}}\left(w^{\prime}\right)$ and define the action on $\mathrm{X}\left(w^{\prime}\right)$ of $\mathrm{G}(\mathbb{Q})$ by the natural action on $\mathcal{T}_{\mu_{0}, \theta_{0}}\left(w^{\prime}\right)$ of $\mathrm{G}(\mathbb{Q})=\left\{h \in \operatorname{End}_{\mathbb{Q}}\left(E^{g}\right)^{\times} \mid h^{*}\left(\mu_{0}\right)=\mu_{0}\right\}$.

Theorem 3.4.1. There is a finite surjective morphism

$$
\Phi: \quad \mathrm{G}(\mathbb{Q}) \backslash\left(\mathrm{X}\left(w^{\prime}\right) \times \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}_{n}\right) \longrightarrow \mathcal{J}_{w^{\prime}, n}
$$

over $\mathbb{F}=\mathbb{F}_{p^{2}}(E[n])$, which is bijective on geometric points. If $n \geq 3$, then $\Phi$ induces an isomorphism $\tilde{\Phi}: \mathrm{G}(\mathbb{Q}) \backslash\left(\mathrm{X}\left(w^{\prime}\right) \times \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}_{n}\right) \rightarrow \tilde{\mathcal{J}}_{w^{\prime}, n}$.

Proof. Clearly the left hand side can be written as

$$
\begin{equation*}
\coprod_{\gamma \in \mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}_{n}} \Gamma_{\gamma} \backslash \mathrm{X}\left(w^{\prime}\right) \tag{23}
\end{equation*}
$$

with $\Gamma_{\gamma}=\mathrm{G}(\mathbb{Q}) \cap \gamma \mathrm{K}_{n} \gamma^{-1}$. If we write $(\mu, \theta)=\alpha(\gamma)$, then $\Gamma_{\gamma}$ is identified with $\operatorname{Aut}\left(E^{g}, \mu, \theta\right)$. Hence the theorem is nothing but Proposition 3.3.2.

### 3.5 Reducibility of supersingular Ekedahl-Oort strata

Assume $c \leq\lfloor g / 2\rfloor$. Let $W_{c, J}$ be the subgroup of $W_{c}$ generated by the elements of $J=\left\{s_{1}, \ldots, s_{c-1}\right\}$. Let $w^{\prime}$ be an element of $\bar{W}_{c}^{\prime}$. Note a (any) representative of $w^{\prime}$ is not in $W_{c, J}$. Hence by Bonnafé and Rouquier [1], Theorem 2, the Deligne-Lusztig variety $\mathrm{X}\left(w^{\prime}\right)$ is irreducible, since $W_{c, J}$ is a maximal parabolic subgroup of $W_{c}$. Thus from Theorem 3.4.1 and (23), we have

Corollary 3.5.1. The set of irreducible (connected) components of $\mathcal{J}_{w^{\prime}}$ is identified with $\mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}$.

Let us estimate $H_{g, c}=\sharp \mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}$ by the mass formula. We have

$$
H_{g, c} \geq 2 \mathfrak{m}_{g, c}
$$

where

$$
\mathfrak{m}_{g, c}=\sum_{\gamma \in \mathrm{G}(\mathbb{Q}) \backslash \mathrm{G}\left(\mathbb{A}^{\infty}\right) / \mathrm{K}} \frac{1}{\sharp \mathrm{G}(\mathbb{Q}) \cap \gamma \mathrm{K} \gamma^{-1}} .
$$

From now on, we compute the mass $\mathfrak{m}_{g, c}$. Applying Prasad's mass formula [28] to G, we have

$$
\begin{equation*}
\mathfrak{m}_{g, c}=\prod_{i=1}^{g} \frac{(2 i-1)!}{(2 \pi)^{2 i}} \cdot \prod_{l \neq p} \frac{l^{2 g^{2}+g} \sharp \operatorname{Sp}_{2 g}\left(\mathbb{F}_{l}\right)}{l} \cdot \frac{p^{\left(\operatorname{dim} \mathrm{L}_{p}+2 g^{2}+g\right) / 2}}{\sharp \mathrm{~L}_{p}\left(\mathbb{F}_{p}\right)}, \tag{24}
\end{equation*}
$$

where $L_{p}$ is a connected subgroup scheme over $\mathbb{F}_{p}$ of $\mathrm{G}_{p}=\mathrm{G} \otimes_{\mathbb{Z}} \mathbb{F}_{p}$ such that

$$
\begin{equation*}
\mathrm{G}_{p}=\mathrm{L}_{p} \cdot \mathcal{R}_{u}\left(\mathrm{G}_{p}\right) \quad \text { with } \quad \mathrm{L}_{p} \cap \mathcal{R}_{u}\left(\mathrm{G}_{p}\right)=\{1\} \tag{25}
\end{equation*}
$$

with the unipotent radical $\mathcal{R}_{u}\left(\mathrm{G}_{p}\right)$ of $\mathrm{G}_{p}$ (cf. [2, 11.21], $\mathcal{R}_{u}\left(\mathrm{G}_{p}\right)$ is a reduced subgroup scheme over $\mathbb{F}_{p}$ of $\mathrm{G}_{p}$ and for an algebraically closed field $k, \mathcal{R}_{u}\left(\mathrm{G}_{p}\right) \otimes k$ is the unipotent part of the connected component of the intersection $\bigcap \mathrm{B}$ of all Borel $k$-subgroups B of $\mathrm{G}_{p} \otimes k$ ). We call (25) a Levi decomposition of $\mathrm{G}_{p}$. Note (24) is independent of the choice of Levi decomposition.

We need to choose a Levi decomposition and describe it explicitly. Put $\mathfrak{o}=\mathcal{O} \otimes \mathbb{F}_{p}$, which can be written as $\mathbb{F}_{p^{2}}[F] /\left(F^{2}=0, F a={ }^{\sigma} a F, a \in \mathbb{F}_{p^{2}}\right)$. The main involution of $\mathcal{O}$ induces an involution of $\mathfrak{o}$, which sends $x=a+b F$ to $\bar{x}={ }^{\sigma} a-b F$ for $a, b \in \mathbb{F}_{p^{2}}$. By (19) there is an isomorphism from $\mathrm{G}_{p}$ to the affine group scheme $\mathcal{G}_{p}$ defined by

$$
\mathcal{G}_{p}(R)=\left\{\left.h \in \mathrm{GL}_{g}(\mathfrak{o} \otimes R)\right|^{t} \bar{h} \psi h=\psi\right\}
$$

for any $\mathbb{F}_{p}$-algebra $R$, where $\psi$ is the right hand side of (19) regarded as an element of $\mathrm{M}_{g}(\mathfrak{o})$. We can define a subgroup scheme $\mathcal{N}_{p}$ over $\mathbb{F}_{p}$ of $\mathcal{G}_{p}$ by the functor

$$
\begin{equation*}
R \quad \longmapsto \quad \mathcal{G}_{p}(R) \cap\left(1+F \mathrm{M}_{g}\left(\mathbb{F}_{p^{2}} \otimes R\right)\right) \tag{26}
\end{equation*}
$$

for any $\mathbb{F}_{p^{-}}$-algebra $R$; indeed let $u \in \mathrm{M}_{g}\left(\mathbb{F}_{p^{2}} \otimes R\right)$ and write $u=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with $A \in \mathrm{M}_{g-2 c}\left(\mathbb{F}_{p^{2}} \otimes R\right)$; then $1+F u$ is in $\mathcal{N}_{p}(R)$ if and only if $A={ }^{t} A$ and $B=0$; hence the functor (26) is represented by an $\mathbb{F}_{p}$-scheme (a subgroup scheme of $\mathcal{G}_{p}$ ). Note that $\mathcal{N}_{p}$ is geometrically connected, and this is a unipotent normal subgroup of $\mathcal{G}_{p}$. We can also define a subgroup scheme $\mathcal{L}_{p}$ over $\mathbb{F}_{p}$ of $\mathcal{G}_{p}$ by the functor

$$
\begin{equation*}
R \quad \longmapsto \quad\left\{h \in \mathrm{GL}_{g}\left(\mathbb{F}_{p^{2}} \otimes R\right) \mid h^{\dagger} \psi h=\psi \text { in } \mathrm{M}_{g}(\mathfrak{o} \otimes R)\right\} \tag{27}
\end{equation*}
$$

for any $\mathbb{F}_{p}$-algebra $R$, where $h^{\dagger}:={ }^{t}\left({ }^{\sigma} h\right)\left(={ }^{t} \bar{h}\right)$; indeed we have
Lemma 3.5.2. The functor (27) is represented by $\mathrm{U}_{g-2 c} \times \operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}} \operatorname{Sp}_{2 c}$, where $\mathrm{U}_{m}$ is the unitary group and $\operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}} \mathrm{Sp}_{2 m}$ is the Weil restriction of the symplectic group:

$$
\begin{aligned}
\mathrm{U}_{m}(R) & =\left\{A \in \mathrm{GL}_{m}\left(\mathbb{F}_{p^{2}} \otimes R\right) \mid A^{\dagger} A=1_{m}\right\} \\
\operatorname{Res}_{\mathbb{F}_{p^{2}} / \mathbb{F}_{p}} \operatorname{Sp}_{2 m}(R) & =\left\{D \in \mathrm{GL}_{2 m}\left(\mathbb{F}_{p^{2}} \otimes R\right) \mid{ }^{t} D J D=J\right\}
\end{aligned}
$$

for any $\mathbb{F}_{p}$-algebra $R$ with

$$
J=\operatorname{diag}(\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \ldots,\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)}_{m}) .
$$

In particular $\mathcal{L}_{p}$ is a connected reductive algebraic group.
 $h=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ with $A \in \mathrm{M}_{g-2 c}\left(R^{\prime}\right)$ and $D \in \mathrm{M}_{2 c}\left(R^{\prime}\right)$. Then the condition $h^{\dagger} \psi h=\psi$ can be paraphrased as $A^{\dagger} A=1_{g-2 c}$ and ${ }^{t} D J D=J$ with $B=0$ and $C=0$.

By (26) and (27) we have

$$
\begin{equation*}
\mathcal{G}_{p}=\mathcal{L}_{p} \cdot \mathcal{N}_{p} \quad \text { with } \quad \mathcal{L}_{p} \cap \mathcal{N}_{p}=\{1\} . \tag{28}
\end{equation*}
$$

Lemma 3.5.3. (28) is a Levi decomposition of $\mathcal{G}_{p}$.
Proof. It suffices to show that $\mathcal{N}_{p}$ is the unipotent radical of $\mathcal{G}_{p}$. Let $k$ be an algebraically closed field. We first prove that $\mathcal{N}_{p} \otimes k$ is contained in every Borel subgroup of $\mathcal{G}_{p} \otimes k$. Let $\mathrm{B}_{0}$ be a Borel subgroup containing $\mathcal{N}_{p} \otimes k$. Let B be any Borel subgroup of $\mathcal{G}_{p} \otimes k$. By [2, 11.1], B is conjugate to $\mathrm{B}_{0}$, say $\mathrm{B}={ }^{h} \mathrm{~B}_{0}$ for a certain $h \in \mathcal{G}_{p}(k)$. Hence $\mathcal{N}_{p} \otimes k={ }^{h}\left(\mathcal{N}_{p} \otimes k\right) \subset{ }^{h} \mathrm{~B}_{0}=\mathrm{B}$. Since $\mathcal{N}_{p} \otimes k$ is connected and unipotent, we have $\mathcal{N}_{p} \subset \mathcal{R}_{u}\left(\mathcal{G}_{p}\right)$. Applying [2, 14.11] to the homomorphism $f: \mathcal{G}_{p} \rightarrow \mathcal{G}_{p} / \mathcal{N}_{p} \simeq \mathcal{L}_{p}$, we have $f\left(\mathcal{R}_{u}\left(\mathcal{G}_{p}\right)\right)=\mathcal{R}_{u}\left(\mathcal{L}_{p}\right)$. Since $\mathcal{L}_{p}$ is reductive (Lemma 3.5.2), we have $\mathcal{R}_{u}\left(\mathcal{L}_{p}\right)=\{1\}$. Hence we obtain $\mathcal{R}_{u}\left(\mathcal{G}_{p}\right) \subset \mathcal{N}_{p}$.

Proposition 3.5.4. We have

$$
\mathfrak{m}_{g, c}=\prod_{i=1}^{g} \frac{(2 i-1)!\zeta(2 i)}{(2 \pi)^{2 i}} \cdot\binom{g}{2 c}_{p^{2}} \cdot \prod_{i=1}^{g-2 c}\left(p^{i}+(-1)^{i}\right) \prod_{i=1}^{c}\left(p^{4 i-2}-1\right)
$$

where $\zeta(s)$ is the Riemann zeta function and

$$
\binom{g}{r}_{q}:=\frac{\prod_{i=1}^{g}\left(q^{i}-1\right)}{\prod_{i=1}^{r}\left(q^{i}-1\right) \prod_{i=1}^{g-r}\left(q^{i}-1\right)} \quad \in \mathbb{Z}[q]
$$

Proof. As $\mathrm{L}_{p}$ in (24) we can take the group isomorphic to $\mathcal{L}_{p}$ via the isomorphism $\mathrm{G}_{p} \simeq \mathcal{G}_{p}$. Then we have $\operatorname{dim} \mathrm{L}_{p}=(g-2 c)^{2}+2\left(2 c^{2}+c\right)$. The desired equation follows from (24) and the formulas

$$
\sharp \operatorname{Sp}_{2 m}\left(\mathbb{F}_{q}\right)=q^{2 m^{2}+m} \prod_{i=1}^{m}\left(1-q^{-2 i}\right) \quad \text { and } \quad \sharp \mathrm{U}_{m}\left(\mathbb{F}_{q}\right)=q^{m^{2}} \prod_{i=1}^{m}\left(1-(-1)^{i} q^{-i}\right)
$$

(cf. [4, Chapter 1], where the notation $\mathrm{U}_{m}\left(\mathbb{F}_{q^{2}}\right)$ is used instead of $\mathrm{U}_{m}\left(\mathbb{F}_{q}\right)$ ).
Corollary 3.5.5. If $w \in{ }^{I} W_{g}^{(c)}$ with $c \leq\lfloor g / 2\rfloor$, then $\mathcal{S}_{w}$ is reducible except possibly for small $p$.

Proof. Set $w^{\prime}=\mathfrak{r}(w)$. Corollary 3.5.1 says that the Hecke action on the set of connected components of $\mathcal{J}_{w^{\prime}}$ is transitive. Since the Hecke action stabilizes $\mathcal{S}_{w}$, the number of connected components of $\mathcal{S}_{w}$ is greater than or equal to that of $\mathcal{J}_{w^{\prime}}$. Clearly we have $\lim _{p \rightarrow \infty} H_{g, c} \geq \lim _{p \rightarrow \infty} \mathfrak{m}_{g, c}=\infty$. Hence $\mathcal{S}_{w}$ is reducible for sufficiently large $p$.

## References

[1] C. Bonnafé and R. Rouquier: On the irreducibility of Deligne-Lusztig varieties. C. R. Math. Acad. Sci. Paris 343 (2006), no. 1, 37-39.
[2] A. Borel: Linear algebraic groups. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.
[3] N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002.
[4] R. W. Carter: Simple groups of Lie type. Pure and Applied Mathematics, A Wiley-Interscience Publication, (1972).
[5] C.-L. Chai and F. Oort: Monodromy and irreducibility of leaves. 30 pages, preprint. See http://www.math.uu.nl/people/oort/.
[6] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math. (2) 103 (1976), no. 1, 103-161.
[7] M. Deuring: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, (1941), 197-272.
[8] T. Ekedahl and G. van der Geer: Cycle classes of the E-O stratification on the moduli of abelian varieties. To appear in: Algebra, Arithmetic and Geometry Volume I: In Honor of Y. I. Manin Series: Progress in Mathematics, Vol. 269 Tschinkel, Yuri; Zarhin, Yuri G. (Eds.) 2008.
[9] U. Görtz and C.-F. Yu: Supersingular Kottwitz-Rapoport strata and DeligneLusztig varieties. Preprint. arXiv: 0802.3260v1
[10] A. Grothendieck: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. No. 28.
[11] S. Harashita: Ekedahl-Oort strata and the first Newton slope strata. J. Algebraic Geom. 16 (2007), 171-199.
[12] M. Hoeve: Ekedahl-Oort strata in the supersingular locus. Preprint. arXiv: 0802.4012
[13] T. Ibukiyama, T. Katsura and F. Oort: Supersingular curves of genus two and class numbers. Compositio Math. 57 (1986), pp. 127-152.
[14] J. Igusa: Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 312-314.
[15] A. J. de Jong: Finite locally free group schemes in characteristic p and Dieudonné modules. Invent. Math. 114 (1993), no. 1, 89-137.
[16] T. Katsura and F. Oort: Families of supersingular abelian surfaces. Compositio Math. 62 (1987), no. 2, 107-167.
[17] K.-Z. Li: Classification of Supersingular Abelian Varieties. Math. Ann. 283 (1989), pp. 333-351.
[18] K.-Z. Li and F. Oort: Moduli of Supersingular Abelian Varieties. Lecture Notes in Math. 1680 (1998).
[19] B. Moonen: Group schemes with additional structures and Weyl group cosets. In: Moduli of abelian varieties (Ed. C. Faber, G. van der Geer, F. Oort), Progr. Math., 195, Birkhäuser, Basel, 2001; pp. 255-298.
[20] B. Moonen and T. Wedhorn: Discrete invariants of varieties in positive characteristic. Int. Math. Res. Not. 2004, no. 72, 3855-3903.
[21] D. Mumford: Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5 Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London 1970.
[22] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34. Springer-Verlag, Berlin, 1994.
[23] T. Oda: The first de Rham cohomology group and Dieudonné modules. Ann. Sci. Ecole Norm. Sup. 4série, t. 2 (1969), pp. 63-135.
[24] A. Ogus: Supersingular K3 crystals. Astérisque 64 (1979), pp. 3-86.
[25] F. Oort: Subvarieties of moduli spaces. Invent. Math. 24 (1974), 95-119.
[26] F. Oort: Which abelian surfaces are products of elliptic curves? Math. Ann. 214 (1975), 35-47.
[27] F. Oort: A stratification of a moduli space of abelian varieties. Progress in Mathematics, 195, pp. 345-416, Birkhäuser, Basel, 2001.
[28] G. Prasad: Volumes of $S$-arithmetic quotients of semi-simple groups. Publ. Math. Inst. HES, tome 69 (1989), pp. 91-114.
[29] T. Shioda: Supersingular K3 surfaces. Lecture Notes in Math. 732, (1979), pp. 564-591.
[30] I. Vollaard: The supersingular locus of the Shimura variety for $G U(1, s)$. To appear in Canad. J. Math.
[31] I. Vollaard and T. Wedhorn: The supersingular locus of the Shimura variety of $G U(1, n-1)$ II. Preprint. arXiv: 0804.1522v1

Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha Kashiwa-shi Chiba 277-8582 Japan.
E-mail address: harasita at ms.u-tokyo.ac.jp

