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Abstract

We study the moduli space of principally polarized abelian varieties
over fields of positive characteristic. In this paper we describe certain
unions of Ekedahl-Oort strata contained in the supersingular locus in
terms of Deligne-Lusztig varieties. As a corollary we show that each
Ekedahl-Oort stratum contained in the supersingular locus is reducible
except possibly for small p.

1 Introduction

Let Ag be the moduli space of principally polarized abelian varieties over fields
of characteristic p > 0. The moduli space Ag has the Newton polygon strat-
ification, which is defined by isogeny types of p-divisible groups. Ekedahl and
Oort introduced another new stratification on Ag in [27], which is now called the
Ekedahl-Oort stratification: two principally polarized abelian varieties A and
B are in the same stratum if and only if there exists an isomorphism between
their p-kernels A[p] and B[p] over an algebraically closed field. The isomorphism
classes of such p-kernels are classified by elements of a subset IWg of the Weyl
group Wg of the symplectic group Sp2g. We write Sw for the Ekedahl-Oort
stratum related to w ∈ IWg.

In the usual way we identify Wg with

{w ∈ Aut{1, . . . , 2g} | w(i) + w(2g + 1 − i) = 2g + 1} . (1)

Let {s1, . . . , sg} be the set of simple reflections, where si = (i, i + 1) · (2g −
i, 2g + 1 − i) for i < g and sg = (g, g + 1). Let I = {s1, . . . , sg−1} and let Wg,I

be the subgroup of Wg generated by elements of I. We denote by IWg the set
of (I, ∅)-reduced elements of Wg (cf. [3], Chap. IV, Ex. §1, 3), which is a set of
representatives of Wg,I\Wg. We also write W g for Wg,I\Wg/Wg,I . Note IWg

is explicitly given by

IWg =
{

w ∈ Wg

∣∣ w−1(1) < · · · < w−1(g)
}

. (2)
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For c ≤ g let

IW [c]
g =

{
w ∈ IWg

∣∣ w(i) = i, ∀ i ≤ g − c
}

, (3)

and set IW
(c)
g = IW

[c]
g − IW

[c−1]
g for c > 0 and IW

(0)
g = IW

[0]
g = {id}. We

define a map
r : IW

(c)
g −−−−→ W c (4)

by sending w to the class of v ∈ Wc determined by v(i) = w(g − c + i)− (g − c)
for all 1 ≤ i ≤ c. We denote by W

′
c the image of r.

Assume c ≤ bg/2c. For w′ ∈ W
′
c, we shall investigate the union Jw′ of the

Ekedahl-Oort strata Sw with w ∈ IW
(c)
g and r(w) = w′:

Jw′ =
⋃

r(w)=w′

Sw. (5)

For each c, we fix once and for all a symplectic vector space (L0, 〈 , 〉) over Fp2

of dimension 2c and a maximal totally isotropic subspace C0 over Fp2 of L0. Let
Sp(L0) denote the symplectic group over Fp2 associated to (L0, 〈 , 〉). Let P0

be the parabolic subgroup of Sp(L0) stabilizing C0. Let X be the flag variety
Sp(L0)/P0 over Fp2 . For w′ ∈ W c, let X(w′) be the Deligne-Lusztig variety in
X related to w′. We shall review the definition of Deligne-Lusztig varieties in
§2.6.

Main theorem. Assume c ≤ bg/2c. For each w′ ∈ W
′
c, there exists a finite

surjective morphism

G(Q)\X(w′) × G(A∞)/K −−−−→ Jw′

over Fp2 , which is bijective on geometric points, see §3.2 for the definition of the
quaternion unitary group G over Z and the open compact subgroup K of G(A∞)
and see §3.4 for the G(Q)-action on X(w′).

In this paper we shall prove this theorem in the case of g ≥ 2. If g = 1,
then IW

(0)
1 = {id} and Sid consists of the supersingular elliptic curves, see

Deuring [7] and Igusa [14] for this case. The case of g = 2 has been studied
by Ibukiyama-Katsura-Oort [13] and Katsura-Oort [16]. In the case of unitary
Shimura varieties, Vollaard [30] has dealt with the decompositions of some basic
loci into Deligne-Lusztig varieties.

The main theorem above seems to have been refined by Hoeve, see [12] where
he described individual Ekedahl-Oort strata contained in the supersingular locus
in terms of “fine” Deligne-Lusztig varieties. We also mention the paper [31] by
Vollaard and Wedhorn, in which they proved an analogous result in the case of
unitary Shimura varieties. Deligne-Lusztig varieties also appear in the paper [9]
by Görtz and Yu, where they studied supersingular Kottwitz-Rapoport strata.

Thanks to Bonnafé and Rouquier [1], we have a corollary to the main theorem
(see §3.5 for further details):
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Corollary. For any w′ ∈ W
′
c with c ≤ bg/2c, the number of irreducible (con-

nected) components of Jw′ equals the class number Hg,c = ]G(Q)\G(A∞)/ K.

Oort conjectured that (i) Sw is irreducible if Sw is not contained in the
supersingular locus and (ii) Sw is reducible for sufficiently large p otherwise.
In Remark 2.5.7 we shall see that Sw is contained in the supersingular locus if
and only if w ∈ IW

(c)
g with c ≤ bg/2c. Ekedahl and van der Geer proved in [8],

Theorem 11.5 that Sw is irreducible for every w ∈ IW
(c)
g with c > bg/2c; thus (i)

was proved. In the last section we shall confirm (ii) by showing limp→∞ Hg,c =
∞.
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2 Preliminaries

We recall some basic definitions and facts on the Dieudonné theory, abelian
varieties, the Ekedahl-Oort stratification and Deligne-Lusztig varieties.

2.1 The Dieudonné theory over a perfect field

We fix once and for all a rational prime p. Let k be a perfect field of characteristic
p. We denote by W (k) the ring of Witt vectors with coefficients in k. We define
a ring E = Ek by the p-adic completion of

W (k)[F ,V]/(FV − p,VF − p,Fa − σaF ,Vσa − aV,∀a ∈ W (k)). (6)

Here σ is the Frobenius map on W (k). A Dieudonné module over k is a left
E-module M which is finitely generated as a W (k)-module. If M is also free as
a W (k)-module, we call M a free Dieudonné module.

The covariant Dieudonné theory says that there is a canonical categorical
equivalence D from the category of p-torsion finite commutative group schemes
(resp. p-divisible groups) over k to the category of Dieudonné modules over
k which are of finite length (resp. free as W (k)-modules). We write F and
V for “Frobenius” and “Verschiebung” on commutative group schemes. The
covariant Dieudonné functor D satisfies D(F ) = V and D(V ) = F . The dual
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Dieudonné module M t is the W (k)-module HomW (k)(M,W (k)) with F and
V-operators defined by (Ff)(x) = σf(Vx) and (Vf)(x) = σ−1

f(Fx) for any
f ∈ HomW (k)(M,W (k)) and x ∈ M . For an abelian variety Y over k, we have
a free Dieudonné module D(Y ) := D(Y [p∞]). The Dieudonné module D(Y t) of
the dual abelian variety Y t is canonically isomorphic to D(Y )t.

Let M be a free Dieudonné module over k. A quasi-polarization on M is a
non-degenerate W (k)-bilinear alternating form

〈 , 〉 : M ⊗W (k) M → W (k) (7)

satisfying 〈Fx, y〉 = σ〈x,Vy〉. A quasi-polarization is called principal if it is a
perfect pairing. By [23, p.101], a polarization λ on an abelian variety Y induces
a quasi-polarization 〈 , 〉λ on D(Y ); moreover λ is p-principal if and only if 〈 , 〉λ
is principal.

Two free Dieudonné modules M and N are said to be isogenous if there
exists an injective E-homomorphism from M to N with torsion cokernel. A
free Dieudonné module M is called supersingular (resp. superspecial) if M is
isogenous (resp. isomorphic) to E⊕g

1,1 over an algebraically closed field, where
E1,1 := E/E(F − V). For a free Dieudonné module M , the a-number a(M) of
M is defined to be dimk M/(F ,V)M . We have a(M) = g if and only if M is
superspecial ([18], p. 32).

An abelian variety Y over k is said to be supersingular (resp. superspecial) if
the Dieudonné module D(Y ) is supersingular (resp. superspecial). An abelian
variety Y is supersingular if and only if there is an isogeny from Eg to Y over an
algebraically closed field (cf. [25], Theorem 4.2 and [24], Theorem 6.2), where E
is a supersingular elliptic curve. For g ≥ 2, an abelian variety Y is superspecial
if and only if there is an isomorphism between Y and Eg over an algebraically
closed field (this condition does not depend on the choice of E, see [24], Theorem
6.2 and [29], Theorem 3.5).

2.2 α-groups

Let S be any scheme. A locally free finite group scheme G over S is called an
α-group if both FG/S : G → G(p) and VG/S : G(p) → G are zero.

For α-groups, the covariant Dieudonné functor is extended as follows: there
is an equivalence of categories from the category of α-groups over S to the
category of locally free sheaves of finite rank on S, which is defined by composing
the Cartier dual functor and the anti-equivalence obtained in [15], Proposition
2.2. Also see [17], Corollary 2.6 or [18], 2.4. Let G be an α-group over S and let
L be the associated locally free sheaf on S. Then the locally free sheaf associated
to the Cartier dual GD is isomorphic to the locally free sheaf Hom(L,OS).

2.3 Descent of polarizations

Let (Z, µ) be a polarized abelian scheme over S and set G := Ker µ. Note that
µ induces an isomorphism ı : G → GD (cf. [18], 3.7). Assume G is an α-group.
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Associated to G, we have a locally free sheaf L. Let  be the isomorphism
L → Hom(L,OS) induced by ı, which gives an alternating perfect pairing on
L. Let ρ : Z → Y be an isogeny of abelian schemes and set H = Ker ρ.
Assume H ⊂ G. Then H is also an α-group. As shown in the proof of [18],
3.7, Lemma, µ descends to a polarization on Y if and only if the composition
H ⊂ G

ı→ GD → HD is zero. Let I be the locally free subsheaf of L associated
to H.

Lemma 2.3.1. µ descends to a polarization on Y if and only if I is totally
isotropic in L.

Proof. Paraphrasing the condition that H ⊂ G
ı→ GD → HD is zero, we have

that the composition I ⊂ L → Hom(L,OS) → Hom(I,OS) is zero. This is
nothing but the condition that I is totally isotropic in L.

2.4 Minimal isogenies

Recall [17], Lemma 1.3:

Lemma 2.4.1. Let k be a perfect field of characteristic p. For a supersingu-
lar Dieudonné module over k, there is a biggest superspecial Dieudonné module
S0(M) contained in M , and dually there exists a smallest superspecial Dieudonné
module S0(M) in M ⊗ fracW (k) containing M , where frac(W (k)) denotes the
fractional field of W (k).

Let K be an arbitrary field of characteristic p. We denote by Kpf the perfect
hull of K. For supersingular p-divisible groups G and H over K, an isogeny
H → G over K is called minimal if the induced isogeny D(H⊗Kpf) → D(G⊗Kpf)
is isomorphic to the inclusion S0(M) → M with M = D(G ⊗ Kpf). We also
recall [18], 1.8:

Lemma 2.4.2. For a supersingular abelian variety Y over K, there exists a
superspecial abelian variety Z over K and a K-isogeny ρ : Z → Y such that
for any superspecial abelian variety Z ′ over K and any K-isogeny ρ′ : Z ′ → Y ,
there is a unique K-isogeny φ : Z ′ → Z such that ρ′ = ρ ◦ φ. (The isogeny ρ is
also called a minimal isogeny.)

2.5 The Ekedahl-Oort stratification

The main reference for the EO-stratification is [27]. For a formulation in terms
of Weyl groups, see [8], [19] and [20].

Definition 2.5.1. (1) A finite locally free commutative group scheme G over
Fp-scheme S is said to be a BT1 over S if it is annihilated by p and
Im(V : G(p) → G) = Ker(F : G → G(p)).

(2) Assume k is perfect. Let G be a BT1 over k. A symmetry of G is an
isomorphism from G to its Cartier dual GD. A symmetry ı is called a
polarization if the bilinear form 〈 , 〉 : D(G) ⊗k D(G) → k induced by ı is
alternating. Such a pair (G, ı) is called a polarized BT1.
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Recall the classification of polarized BT1’s.

Theorem 2.5.2. Let k be an algebraically closed field. There is a canonical
bijection

E : {polarized BT1 over k} / ' ∼−−−−→ IWg.

Remark 2.5.3. This classification was obtained by Oort [27], (9.4) and Moonen-
Wedhorn [20], (5.4), also see Moonen [19]. Instead of IWg, Oort used the set
of elementary sequences (or symmetric final sequences), see below for the def-
inition of them. The above formulation in terms of Weyl groups is due to
Moonen-Wedhorn.

A symmetric final sequence of length 2g is a map

ψ : {0, . . . , 2g} −−−−→ {0, . . . , g}

such that ψ(i − 1) ≤ ψ(i) ≤ ψ(i − 1) + 1 for 1 ≤ i ≤ 2g with ψ(0) = 0 and
ψ(2g − i) = g − i + ψ(i). To each element w of IWg, we associate a symmetric
final sequence ψw defined by

ψw(i) = ]{a ∈ {1, . . . , i} | w(a) > g}. (8)

This correspondence gives a bijection from IWg to the set of symmetric final
sequences of length 2g. An elementary sequence of length g is the restriction of
a symmetric final sequence of length 2g to {1, . . . , g}. Clearly to give an ele-
mentary sequence of length g is equivalent to giving a symmetric final sequence
of length 2g.

Lemma 2.5.4. For w ∈ IWg, we have w ∈ IW
[c]
g if and only if ψw(g − c) = 0.

Proof. If w ∈ IW
[c]
g , then w(i) = i for i ≤ g − c by definition; hence we obtain

ψw(g− c) = 0 by (8). Conversely assume ψw(g−c) = 0. Then we have w(i) ≤ g
for all i ≤ g− c. Since w ∈ IWg, i.e., w−1(1) < w−1(2) < · · · < w−1(g), we have
w(i) = i for all i ≤ g − c.

Let us recall the definition of the map E in Theorem 2.5.2. Let G be a
polarized BT1 over an algebraically closed field k and let N be the Dieudonné
module of G. We define an operator V−1 on the set of Dieudonné submodules
N ′ of N by

V−1N ′ := V−1(N ′ ∩ V(N)), (9)

and inductively we define a Dieudonné submodule sN ′ of N for any word s of
F and V−1. It was shown in [27], (2.4) that there exists a unique w ∈ IWg

satisfying rk(FsN) = ψw(rk sN) and rk(V−1sN) = g + rk sN − ψw(rk sN) for
any word s. Then we define E(G) = w.

Let G be a polarized BT1 over an algebraically closed field k. Let w = E(G)
and put ψ := ψw. By [27], (9.4), we can express N = D(G) as follows:

N =
2g⊕

i=1

kbi (10)
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with the operators F and V defined by

F(bi) :=

{
bψ(i) if w(i) > g,

0 otherwise,
(11)

V(bj) :=


bi if j = g + i − ψ(i) with w(i) ≤ g and w(j) ≤ g,

−bi if j = g + i − ψ(i) with w(i) ≤ g and w(j) > g,

0 otherwise
(12)

and the polarization 〈 , 〉 defined by

〈bi, b2g+1−j〉 =


1 if i = j and w(i) > g,

−1 if i = j and w(i) ≤ g,

0 if i 6= j.

(13)

We shall use the following:

Lemma 2.5.5. (1) FN has a basis {b1, . . . , bg} and

(2) VN has a basis {bw−1(1), . . . , bw−1(g)}.

Proof. Obvious from (11) and (12).

For w ∈ IWg, the Ekedahl-Oort stratum Sw is defined to be the subset of
Ag consisting of points y ∈ Ag where y comes over some field from a principally
polarized abelian variety Ay such that E(Ay[p]) = w, see [27], (5.11). As shown
in [27], (3.2), Sw is locally closed in Ag; we consider this as a locally closed
subscheme by giving it the reduced induced scheme structure.

Recall the result of Ekedahl and van der Geer:

Theorem 2.5.6 ([8], Theorem 11.5). Assume w ∈ IW (c) with c > bg/2c. Then
Sw is irreducible.

Remark 2.5.7. Let w ∈ IW (c). By Lemma 2.5.4 the condition c ≤ bg/2c is
equivalent to ψw(b(g+1)/2c) = 0. This is also equivalent to that Sw is contained
in the supersingular locus, see [5], (3.7), Step 2 and [11]. Also see Proposition
3.1.5 below.

2.6 Flag varieties and Deligne-Lusztig varieties

We recall the precise definitions of flag varieties and Deligne-Lusztig varieties
used in this paper.

Let (L0, 〈 , 〉) and P0 be as in §1. Let F be a finite field containing Fp2 . Let
X be the functor from the category of F-schemes to the category of sets, sending
S to the set of totally isotropic locally free subsheaves of rank c of π∗L0, where
π : S → Spec(F) → Spec(Fp2). It is known that X is representable. We define
the flag variety X(= XF) to be the scheme representing X. It is known that X is
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regular and projective. For any algebraically closed field k over F, there exists
a canonical bijection from X(k) to the set of parabolic subgroups of the form
h(P0 ⊗k) := h(P0 ⊗k)h−1 for some h ∈ Sp(L0)(k), by sending a totally isotopic
subspace of L0 ⊗ k to its stabilizer group. Note that for h ∈ Sp(L0)(k) we have
h(P0 ⊗k) = P0 ⊗k if and only if h ∈ P0(k).

Let w′ be an element of W c. Let K be a field containing F. Let x, y ∈ X(K)
and let P, Q be the parabolic subgroups of Sp(L0 ⊗ K) stabilizing x and y
respectively. We say x and y are in relative position w′ if over an algebraic
closure k of K there exists an h ∈ Sp(L0)(k) such that we have h(P⊗k) = P0 ⊗k
and h(Q⊗k) = v′

(P0 ⊗k) for a lift v′ ∈ Wc of w′. We define X(w′)(= X(w′)F)
to be the subset of X consisting of points x ∈ X such that x and Fr(x) are in
relative position w′, where Fr is the square of the absolute Frobenius on X. It
is known that X(w′) is locally closed in X; we consider this as a locally closed
subscheme of X by giving it the reduced induced scheme structure. We call
X(w′) the Deligne-Lusztig variety related to w′. By the same argument as in
[6], 1.3, one can check that X(w′) is regular.

3 Proof of the main results

The substantial part of the proof is §3.1. Here we associate a “flag” (i.e., a max-
imal totally isotropic subspace in a symplectic vector space) to each principally
quasi-polarized Dieudonné module M over an algebraically closed field under
the condition c ≤ bg/2c, and describe the condition r(E(M/pM)) = w′ in terms
of the flag. In §3.2 we review a classification of polarizations on the superspecial
abelian varieties by making use of some arithmetic of quaternion unitary groups.
In §3.3 we introduce the moduli space Tµ,θ(w′) of certain isogenies of polarized
supersingular abelian varieties and describe Jw′,n in terms of Tµ,θ(w′); moreover
by using the result of §3.1 we show that Tµ,θ(w′) is isomorphic to the Deligne-
Lusztig variety X(w′). §3.4 is just a paraphrase of the result of §3.3. In the last
subsection §3.5 we enumerate the irreducible components of Jw′ and show the
reducibility of Ekedahl-Oort strata contained in the supersingular locus.

3.1 Principally quasi-polarized Dieudonné modules with
c ≤ bg/2c

Let k be an algebraically closed field of characteristic p. Let M be a principally
quasi-polarized Dieudonné module of genus g over k. Set N = M/pM . For any
Dieudonné submodule T of M , we write T for the k[F ,V]-submodule T/T ∩pM
of N . For a k[F ,V]-submodule S of N , we define a Dieudonné submodule 〈〈S〉〉
of M by

〈〈S〉〉 = {x ∈ M | (xmod p) ∈ S},

and let V−1S be as defined in (9). For an Ek-submodule M ′ of M we denote by
V−1M ′ the Ek-module {m ∈ M ⊗W (k) frac(W (k)) | Vm ∈ M ′}. Then we have
〈〈V−1S〉〉 = V−1〈〈S〉〉 ∩ M and 〈〈FS〉〉 = F〈〈S〉〉 + pM , see [11], Lemma 6.2.
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Lemma 3.1.1. Let S be a k[F ,V]-submodule of N such that VN ⊂ S. Then
we have 〈〈V−1FS〉〉 = V−1F〈〈S〉〉 ∩ M .

Proof. We have 〈〈V−1FS〉〉 = V−1〈〈FS〉〉∩M = V−1(F〈〈S〉〉+pM)∩M . Clearly
VN ⊂ S implies VM ⊂ 〈〈S〉〉; hence pM ⊂ F〈〈S〉〉. Thus we obtain 〈〈V−1FS〉〉 =
V−1F〈〈S〉〉 ∩ M .

Lemma 3.1.2. Assume there exists a k[F ,V]-submodule S of N such that
VN ⊂ S and V−1FS = S. Then 〈〈S〉〉 is a superspecial Dieudonné module,
and therefore M is supersingular.

Proof. We have 〈〈S〉〉 = 〈〈V−1FS〉〉 = V−1F〈〈S〉〉 ∩ M by Lemma 3.1.1. From
this, we have V〈〈S〉〉 ⊂ F〈〈S〉〉; then the a-number dimk 〈〈S〉〉/(F, V )〈〈S〉〉 is equal
to g. Hence 〈〈S〉〉 is superspecial. Then M is supersingular, since VM ⊂ 〈〈S〉〉 ⊂
M .

From the obvious inclusion (V −1F )N ⊂ N , we have a descending filtration

· · · ⊂ (V−1F)2N ⊂ (V−1F)N ⊂ N. (14)

Since N is of finite length, the filtration is stable. Hence (V−1F)∞N is defined.

Lemma 3.1.3. Assume that M is supersingular and VM ⊂ S0(M) ⊂ M . Then
we have S0(M) = (V−1F)∞N .

Proof. By Lemma 3.1.1, we have 〈〈V−1FS0(M)〉〉 = V−1FS0(M)∩M = S0(M);
hence V−1FS0(M) = S0(M). Applying (V−1F)∞ to the both sides of S0(M) ⊂
N , we obtain S0(M) ⊂ (V−1F)∞N .

Note VN ⊂ S0(M) ⊂ (V−1F)∞N and (V−1F)(V−1F)∞N = (V−1F)∞N .
Hence 〈〈(V−1F)∞N〉〉 is superspecial (Lemma 3.1.2). Since S0(M) is the largest
superspecial Dieudonné submodule of M , we have 〈〈(V−1F)∞N〉〉 ⊂ S0(M);
hence (V−1F)∞N ⊂ S0(M).

Let w = E(N) and set ψ = ψw. We choose a basis {b1, . . . , b2g} of N
as satisfying (11), (12) and (13). Let Ni be the subspace of N generated by
b1, . . . , bi. Then we have a filtration

N0 ⊂ · · · ⊂ N2g. (15)

Note FNi = Nψ(i) and V−1Ni = Ng+i−ψ(i).

Lemma 3.1.4. Assume w ∈ IW
(c)
g . Then we have

(1) VN ⊂ N2g−c;

(2) V−1FN2g−c = N2g−c if c ≤ bg/2c.

In particular if c ≤ bg/2c, then 〈〈N2g−c〉〉 is superspecial by Lemma 3.1.2.
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Proof. (1) It suffices to show that bi 6∈ VN ⇐ i > 2g − c. Clearly we have the
equivalences

bi, . . . , b2g 6∈ VN ⇔ w(i), . . . , w(2g) > g ⇔ w(1), . . . , w(2g + 1 − i) ≤ g.

Since w−1(1) < · · · < w−1(g), the last condition is nothing but w(j) = j for
1 ≤ j ≤ 2g + 1 − i, namely w ∈ IW

[2g+1−i]
g . This condition is equivalent to

i > 2g − c.
(2) By c ≤ g− c, we have ψw(2g− c) = g− c+ψw(c) = g− c; hence we have

FN2g−c = Ng−c. Since ψw(g−c) = 0, we have V−1Ng−c = Ng+(g−c)−ψw(g−c) =
N2g−c.

Proposition 3.1.5. Assume c ≤ bg/2c. Let M be a principally quasi-polarized
Dieudonné module over k and set w = E(N) ∈ IWg. The following conditions
are equivalent:

(1) w ∈ IW
(c)
g ,

(2) M is supersingular and S0(M)/S0(M) is a k-vector space of dimension
2c. (In this case we have S0(M) = 〈〈N2g−c〉〉.)

Proof. Let us introduce two conditions (1′) w ∈ IW
[c]
g and (2′) M is supersin-

gular and S0(M)/S0(M) is a k-vector space of dimension ≤ 2c. It suffices to
show (1) ⇒ (2′) and (2) ⇒ (1′).

(1) ⇒ (2′): Note 〈〈N2g−c〉〉 is superspecial by Lemma 3.1.4; hence we have
〈〈N2g−c〉〉 ⊂ S0(M). Lemma 3.1.4 (1) implies VM ⊂ 〈〈N2g−c〉〉 and therefore
VM ⊂ S0(M) holds. Since VS0(M) is the smallest superspecial Dieudonné
module containing VM , we have VS0(M) ⊂ S0(M). Thus S0(M)/S0(M) is a
k-vector space. Since

dimM/S0(M) ≤ dim N/N2g−c ≤ c,

we obtain dimS0(M)/S0(M) ≤ 2c.
(2) ⇒ (1′): Since S0(M)/S0(M) is a k-vector space, we have

VM ⊂ VS0(M) ⊂ S0(M) ⊂ M.

Hence S0(M) = (V−1F)∞N by Lemma 3.1.3. Note dimS0(M) = 2g − c. Then
the dimension of FS0(M) is greater than or equal to g − c. Since F2S0(M) =
pS0(M) = 0, we have ψw(g− c) = 0. This is equivalent to w ∈ IW

[c]
g by Lemma

2.5.4.

Assume c ≤ bg/2c. Let w ∈ IW
(c)
g and let v be the element of Wc determined

by v(i) = w(g − c + i) − (g − c) for all 1 ≤ i ≤ c. Let M be any principally
quasi-polarized Dieudonné module with E(M/pM) = w. Consider the subspace
L := VS0(M)/VS0(M) of N/VS0(M). We put

b′i = bg−c+i mod VS0(M) (16)
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for 1 ≤ i ≤ 2c. Then L is a k-vector space of dimension 2c with a basis
{b′1, . . . , b′2c}; moreover the quasi-polarization on S0(M) induces a perfect alter-
nating pairing on L, which satisfies

〈b′i, b′2c+1−j〉 =


1 if i = j and v(i) > c,

−1 if i = j and v(i) ≤ c,

0 if i 6= j.

(17)

Consider the two maximal totally isotropic subspaces C = VM/VS0(M) and
D = FM/VS0(M) of L. Let P(M) (resp. Q(M)) be the parabolic subgroup of
Sp(L) stabilizing C (resp. D).

Proposition 3.1.6. Assume c ≤ bg/2c. Let w′ ∈ W
′
c. For a principally

quasi-polarized Dieudonné module M with E(M/pM) ∈ IW
(c)
g , the following

are equivalent:

(1) we have r(E(M/pM)) = w′, see (4) for the definition of r,

(2) there exists an isomorphism u : Sp(L) ' Sp(L0 ⊗ k) such that u(P(M)) =
P0 ⊗k and u(Q(M)) = v′

(P0 ⊗k) for a lift v′ ∈ Wc of w′.

Proof. Suppose (1). Put w = E(M/pM). Let v be as above, i.e., the element
of Wc determined by v(i) = w(g − c + i) − (g − c) for all 1 ≤ i ≤ c. Note v is
a lift of w′ by the definition of r. It follows from Lemma 2.5.5 and (16) that
C has a basis {b′v−1(1), . . . , b

′
v−1(c)} and D has a basis {b′1, . . . , b′c}. Hence there

exists an isomorphism u : Sp(L) ' Sp(L0 ⊗ k) such that u(P(M)) = P0 ⊗k and
u(Q(M)) = v(P0 ⊗k).

Conversely suppose (2). Put w′
0 := r(E(M/pM)). By (1) ⇒ (2), there exists

an isomorphism u0 : Sp(L) ' Sp(L0 ⊗ k) such that u0(P(M)) = P0 ⊗k and
u0(Q(M)) = v′

0(P0 ⊗k) for a lift v′
0 ∈ Wc of w′

0. Since any automorphism of
Sp(L0 ⊗ k) is an inner automorphism, there exists h ∈ Sp(L0)(k) such that
Adh = u0 ◦ u−1. Then h(P0 ⊗k) = P0 ⊗k and hv′

(P0 ⊗k) = v′
0(P0 ⊗k). Hence

we have v′ ∈ P0(k)v′
0 P0(k), which means w′ = w′

0.

3.2 Polarizations

Let E be a supersingular elliptic curve over Fp whose Fp-endomorphisms are all
defined over Fp2 , see [26], (4.1) for the existence of such an E. We denote by
F the Frobenius endomorphism of E. Let O = End(E ⊗ Fp2) and let B denote
O ⊗Z Q, which is the quaternion algebra over Q ramified only at p and ∞ over
Q. Note O is a maximal order of B. Let x 7→ x denote the main involution of
B.

We claim that every polarization on Eg over Fp is defined over Fp2 . By
the definition of polarization (cf. [22], Definition 6.3), we need only prove that
all Fp-homomorphisms from Eg to (Eg)t are defined over Fp2 . Note that the
divisor Eg−1×{0}+Eg−2×{0}×E + · · ·+{0}×Eg−1 on Eg defines a principal
polarization η : Eg ' (Eg)t on Eg, which is defined over Fp. Hence it suffices to

11



show that all Fp-endomorphisms of Eg are defined over Fp2 . This follows since
all Fp-endomorphisms of E are defined over Fp2 .

Let n be a natural number with gcd(n, p) = 1, and let c be a non-negative
integer with c ≤ bg/2c. Let Pc,n denote the set of pairs (µ, θ) of polarizations
µ and level n-structures θ on Eg such that Kerµ ' α⊕2c

p . Here αp is the finite
group scheme Ker(F : Ga → Ga). Let F be the finite field Fp2(E[n]). Then
every element (µ, θ) of Pc,n is defined over F. From now on we write E instead
of E ⊗ F. For two elements (µ, θ) and (µ′, θ′) of Pc,n, we say (µ, θ) ≈ (µ′, θ′) if
there exists an automorphism h of Eg such that µ′ = h∗µ and h ◦ θ′ = θ. We
write Λc,n = Pc,n/ ≈. Note Λc,n is a finite set.

Choose an element (µ0, θ0) of Λc,n. Set ϕ = η−1 ◦ µ0, which is an element
of Mg(O). We define a quaternion unitary group G over Z by

G(R) = {h ∈ GLg(O ⊗Z R) | thϕh = ϕ} (18)

for any commutative unitary ring R. It follows from [18], 8.3 and 8.4 that for a
prime number l(6= p), there exists a ul ∈ GLg(Ol) such that tulϕlul = 1g and
there exists a up ∈ GLg(Op) such that

tupϕpup = diag(1, . . . , 1︸ ︷︷ ︸
g−2c

,

(
0 F

−F 0

)
, . . . ,

(
0 F

−F 0

)
︸ ︷︷ ︸

c

). (19)

Let K denote the open compact subgroup
∏

l G(Zl) of G(A∞), where A∞ de-
notes the finite adele ring. (We remark that G(Zl) is isomorphic to Sp2g(Zl) for
l 6= p.) Also Kn is defined to be the kernel of the natural homomorphism from
K to G(Z/nZ). It is known (cf. [13], §2 and [18], Ch. 8 and 9.12) that there is
a bijection

α : G(Q)\G(A∞)/Kn −−−−→ Λc,n, (20)

which is defined as follows: for any element γ of G(A∞) there exists an f ∈
GLg(B) with (deg f, n) = 1 such that fl = γlδl for some δl ∈ Ker(GLg(Ol) →
GLg(Ol/n)); then α(γ) is defined to be (f∗µ0, (f |Eg[n])−1 ◦ θ0), where we see
f as an element of EndQ(Eg)× with EndQ(Eg) := End(Eg) ⊗Z Q; moreover if
α(γ) = (µ, θ) then we have an isomorphism

Aut(Eg, µ, θ) −−−−→ G(Q) ∩ γ Kn γ−1, (21)

which is defined by sending h to fhf−1.

3.3 The moduli space Tµ,θ(w
′)

Assume g ≥ 2. We retain the notation of §3.2. We continue to assume c ≤ bg/2c
and gcd(n, p) = 1 and to write E instead of E ⊗ F. Let (µ, θ) be an element
of Λc,n. Set G = Kerµ, which is an α-group over F of rank p2c. We identify
(L0, 〈 , 〉) ⊗ F with the symplectic vector space over F associated to G.
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Consider the moduli functor Tµ,θ from the category of F-schemes to the
category of sets, sending S to the set of isogenies

ρ : (Eg, µ, θ) ×F S → (Y, λ, ϑ) (22)

as polarized abelian schemes (i.e., µS = ρ∗λ and ρ ◦ θS = ϑ) such that λ is a
principal polarization.

Lemma 3.3.1. Tµ,θ is represented by an F-scheme Tµ,θ, and there is an F-
isomorphism from Tµ,θ to the flag variety X = XF.

Proof. To give an element ρ ∈ Tµ,θ(S) is equivalent to giving an α-subgroup
H of GS with rkH = pc such that µ descends to a polarization on Eg

S/H.
Associated to H ⊂ GS of rank pc we have a locally free subsheaf I of rank c
of π∗L0, where π : S → Spec(F) → Spec(Fp2). By Lemma 2.3.1, µ descends to
a polarization on Eg

S/H if and only if I is totally isotropic in π∗L0. Thus we
obtain an isomorphism Tµ,θ(S) ' X(S), which is functorial on S. Thus Tµ,θ is
represented by X.

There is a canonical morphism Ψ from Tµ,θ to the supersingular locus Wσ,n

defined by sending ρ : (Eg, µ, θ) → (Y, λ, ϑ) to (Y, λ, ϑ). Let w′ be an element
of W

′
c. Let Tµ,θ(w′) be the subset of Tµ,θ consisting of ρ : (Eg, µ, θ) → (Y, λ, ϑ)

with E(Y [p]) ∈ IW
(c)
g and r(E(Y [p])) = w′. By [27], (3.2), Tµ,θ(w′) is locally

closed in Tµ,θ; we consider this as a locally closed subscheme in Tµ,θ by giving it
the reduced induced scheme structure. Let Jw′,n be the subset of Ag,n defined
by

Jw′,n =
⋃

r(w)=w′

Sw,n.

Note Jw′,n is a locally closed subset of Ag; we give it the reduced induced
scheme structure.

Proposition 3.3.2. Let w′ ∈ W
′
c with c ≤ bg/2c.

(1) For every (µ, θ) ∈ Λc,n there is an isomorphism over F:

Tµ,θ(w′) −−−−→ X(w′).

(2) Ψ induces a finite surjective morphism over F:

Ψ :
∐

(µ,θ)∈Λc,n

Aut(Eg, µ, θ)\Tµ,θ(w′) −−−−→ Jw′,n,

which is bijective on geometric points. If n ≥ 3, then Ψ induces an iso-
morphism

Ψ̃ :
∐

(µ,θ)∈Λc,n

Tµ,θ(w′) −−−−→ J̃w′,n,

where J̃w′,n is the normalization of Jw′,n.
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Proof. (1) Let k be an algebraically closed field of characteristic p. Let ρ :
(Eg, µ, θ) ⊗F k → (Y, λ, ϑ) be an element of Tµ,θ(k). The element ρ defines
an isogeny M ⊂ M1,k with M1,k := M1 ⊗ W (k), where M = D(Y ) and
M1 = D(Eg). It follows from Proposition 3.1.5 that if ρ ∈ Tµ,θ(w′)(k), then
M ⊂ M1,k is a minimal isogeny. Let P(M) and Q(M) be the parabolic sub-
groups of Sp(VM1/VM t

1)⊗k stabilizing the maximal totally isotropic subspaces
VM/VM t

1,k and FM/VM t
1,k respectively. Recall that we identify L0 ⊗ F with

the locally free sheaf over Spec(F) associated to G = Ker µ; then we have
a canonical isomorphism ν : Sp(L0 ⊗ F) ' Sp(VM1/VM t

1). Now we regard
P(M) and Q(M) as subgroups of Sp(L0 ⊗ k) via ν. Then the isomorphism
Tµ,θ ' X obtained in Lemma 3.3.1 sends ρ to P(M). By Proposition 3.1.6 we
have ρ ∈ Tµ,θ(w′)(k) if and only if there exists an h ∈ Sp(L0)(k) such that
h P(M) = P0 ⊗k and h Q(M) = v′

(P0 ⊗k) for a lift v′ ∈ Wc of w′. Here we
used the fact that every automorphism of Sp(L0)⊗k is an inner automorphism.
We also have FrP(M) = Q(M). Hence, identifying Tµ,θ with X, we obtain
Tµ,θ(w′)(k) = X(w′)(k) in X(k). Since both Tµ,θ(w′) and X(w′) are reduced
locally closed subschemes in X, we have Tµ,θ(w′) = X(w′) by the Hilbert Null-
stellensatz.

(2) Let Tn denote the source of Ψ. First we show that Ψ sets up a bijection
from Tn(k) to Jw′,n(k) for any algebraically closed field k. By Proposition 3.1.5,
for any (Y, λ, ϑ) ∈ Jw′,n(k) we have an isogeny S0(M) ⊂ M with M = D(Y )
such that M/S0(M) is a k-vector space of dimension c; by [24], Theorem 6.2 we
have a corresponding isogeny ρ : Eg → Y with Ker ρ ' αc

p; then setting µ = ρ∗λ
and θ = (ρ|Eg[n])−1 ◦ ϑ, we have a geometric point ρ : (Eg, µ, θ) → (Y, λ, ϑ) of
Tµ,θ(w′). Proposition 3.1.5 also says that every element ρ of Tµ,θ(w′)(k) is a
minimal isogeny. Hence Ψ is bijective on geometric points by Lemma 2.4.2.

By definition Tµ,θ(w′) is the reduced scheme associated to Tµ,θ ×Wσ,n Jw′,n.
Since Ψ : Tµ,θ → Wσ,n is proper, the composition

Ψ′ : Tµ,θ(w′) ↪→ Tµ,θ ×Wσ,n Jw′,n → Jw′,n

is proper. Clearly Ψ′ is quasi-finite; hence this is finite. Since Jw′,n is noethe-
rian, the induced morphism Aut(Eg, µ, θ)\Tµ,θ(w′) → Jw′,n is finite. Thus Ψ is
finite.

Assume n ≥ 3. Then we have Aut(Eg, µ, θ) = {id}. Since Tµ,θ(w′) is regular
by (1), Ψ induces a morphism

Ψ̃ :
∐

(µ,θ)∈Λc,n

Tµ,θ(w′) −−−−→ J̃w′,n.

By [10], §8, Lemme (8.12.10.1), it suffices to check that Ψ̃ is birational, in order
to show that Ψ̃ is an isomorphism. Let (Y, λ, ϑ) be the polarized abelian variety
with level n-structure over a generic point Spec(K) → Jw′,n. By Lemma 2.4.2
there is an isogeny ρ : (Z, µ′, θ′) → (Y, λ, ϑ) such that ρ is a minimal isogeny.
Since Ag,pc,n is a fine moduli space, (Z, µ′, θ′) can be written as (Eg, µ, θ)⊗F K
for some (µ, θ) ∈ Λc,n. Hence by associating ρ to (Y, λ, ϑ), we obtain the inverse
morphism of Ψ̃ on generic points. Thus Ψ̃ is birational.
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3.4 The main theorem

Assume c ≤ bg/2c. Let n be a natural number with gcd(n, p) = 1. Let (µ0, θ0)
be the element of Λc,n chosen in §3.2. Let w′ ∈ W

′
c. We identify X(w′) with

Tµ0,θ0(w
′) and define the action on X(w′) of G(Q) by the natural action on

Tµ0,θ0(w
′) of G(Q) = {h ∈ EndQ(Eg)× | h∗(µ0) = µ0}.

Theorem 3.4.1. There is a finite surjective morphism

Φ : G(Q)\ (X(w′) × G(A∞)/ Kn) −−−−→ Jw′,n

over F = Fp2(E[n]), which is bijective on geometric points. If n ≥ 3, then Φ
induces an isomorphism Φ̃ : G(Q)\ (X(w′) × G(A∞)/ Kn) → J̃w′,n.

Proof. Clearly the left hand side can be written as∐
γ∈G(Q)\G(A∞)/ Kn

Γγ\X(w′) (23)

with Γγ = G(Q)∩γ Kn γ−1. If we write (µ, θ) = α(γ), then Γγ is identified with
Aut(Eg, µ, θ). Hence the theorem is nothing but Proposition 3.3.2.

3.5 Reducibility of supersingular Ekedahl-Oort strata

Assume c ≤ bg/2c. Let Wc,J be the subgroup of Wc generated by the elements
of J = {s1, . . . , sc−1}. Let w′ be an element of W

′
c. Note a (any) representative

of w′ is not in Wc,J . Hence by Bonnafé and Rouquier [1], Theorem 2, the
Deligne-Lusztig variety X(w′) is irreducible, since Wc,J is a maximal parabolic
subgroup of Wc. Thus from Theorem 3.4.1 and (23), we have

Corollary 3.5.1. The set of irreducible (connected) components of Jw′ is iden-
tified with G(Q)\G(A∞)/K.

Let us estimate Hg,c = ]G(Q)\G(A∞)/ K by the mass formula. We have

Hg,c ≥ 2mg,c,

where
mg,c =

∑
γ∈G(Q)\G(A∞)/ K

1
] G(Q) ∩ γ K γ−1

.

From now on, we compute the mass mg,c. Applying Prasad’s mass formula [28]
to G, we have

mg,c =
g∏

i=1

(2i − 1)!
(2π)2i

·
∏
l 6=p

l2g2+g

] Sp2g(Fl)
· p(dim Lp +2g2+g)/2

]Lp(Fp)
, (24)

where Lp is a connected subgroup scheme over Fp of Gp = G⊗ZFp such that

Gp = Lp · Ru(Gp) with Lp ∩ Ru(Gp) = {1} (25)
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with the unipotent radical Ru(Gp) of Gp (cf. [2, 11.21], Ru(Gp) is a reduced
subgroup scheme over Fp of Gp and for an algebraically closed field k, Ru(Gp)⊗k
is the unipotent part of the connected component of the intersection

⋂
B of all

Borel k-subgroups B of Gp ⊗k). We call (25) a Levi decomposition of Gp. Note
(24) is independent of the choice of Levi decomposition.

We need to choose a Levi decomposition and describe it explicitly. Put
o = O ⊗ Fp, which can be written as Fp2 [F ]/(F 2 = 0, Fa = σaF, a ∈ Fp2).
The main involution of O induces an involution of o, which sends x = a + bF
to x = σa − bF for a, b ∈ Fp2 . By (19) there is an isomorphism from Gp to the
affine group scheme Gp defined by

Gp(R) = {h ∈ GLg(o ⊗ R) | thψh = ψ}

for any Fp-algebra R, where ψ is the right hand side of (19) regarded as an
element of Mg(o). We can define a subgroup scheme Np over Fp of Gp by the
functor

R 7−→ Gp(R) ∩ (1 + F Mg(Fp2 ⊗ R)) (26)

for any Fp-algebra R; indeed let u ∈ Mg(Fp2 ⊗ R) and write u =
(

A B
C D

)
with A ∈ Mg−2c(Fp2 ⊗ R); then 1 + Fu is in Np(R) if and only if A = tA
and B = 0; hence the functor (26) is represented by an Fp-scheme (a subgroup
scheme of Gp). Note that Np is geometrically connected, and this is a unipotent
normal subgroup of Gp. We can also define a subgroup scheme Lp over Fp of Gp

by the functor

R 7−→ {h ∈ GLg(Fp2 ⊗ R) | h†ψh = ψ in Mg(o ⊗ R)} (27)

for any Fp-algebra R, where h† := t(σh) (= th); indeed we have

Lemma 3.5.2. The functor (27) is represented by Ug−2c ×ResFp2/Fp
Sp2c, where

Um is the unitary group and ResFp2/Fp
Sp2m is the Weil restriction of the sym-

plectic group:

Um(R) = {A ∈ GLm(Fp2 ⊗ R) | A†A = 1m},
ResFp2/Fp

Sp2m(R) = {D ∈ GL2m(Fp2 ⊗ R) | tDJD = J}

for any Fp-algebra R with

J = diag(
(

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

)
︸ ︷︷ ︸

m

).

In particular Lp is a connected reductive algebraic group.

Proof. Let R be any Fp-algebra and set R′ = Fp2 ⊗R. Let h ∈ GLg(R′). Write

h =
(

A B
C D

)
with A ∈ Mg−2c(R′) and D ∈ M2c(R′). Then the condition

h†ψh = ψ can be paraphrased as A†A = 1g−2c and tDJD = J with B = 0 and
C = 0.

16



By (26) and (27) we have

Gp = Lp · Np with Lp ∩Np = {1}. (28)

Lemma 3.5.3. (28) is a Levi decomposition of Gp.

Proof. It suffices to show that Np is the unipotent radical of Gp. Let k be
an algebraically closed field. We first prove that Np ⊗ k is contained in every
Borel subgroup of Gp ⊗ k. Let B0 be a Borel subgroup containing Np ⊗ k. Let
B be any Borel subgroup of Gp ⊗ k. By [2, 11.1], B is conjugate to B0, say
B = h B0 for a certain h ∈ Gp(k). Hence Np ⊗ k = h(Np ⊗ k) ⊂ h B0 = B. Since
Np ⊗ k is connected and unipotent, we have Np ⊂ Ru(Gp). Applying [2, 14.11]
to the homomorphism f : Gp → Gp/Np ' Lp, we have f(Ru(Gp)) = Ru(Lp).
Since Lp is reductive (Lemma 3.5.2), we have Ru(Lp) = {1}. Hence we obtain
Ru(Gp) ⊂ Np.

Proposition 3.5.4. We have

mg,c =
g∏

i=1

(2i − 1)!ζ(2i)
(2π)2i

·
(

g

2c

)
p2

·
g−2c∏
i=1

(pi + (−1)i)
c∏

i=1

(p4i−2 − 1),

where ζ(s) is the Riemann zeta function and(
g

r

)
q

:=
∏g

i=1(q
i − 1)∏r

i=1(qi − 1)
∏g−r

i=1 (qi − 1)
∈ Z[q].

Proof. As Lp in (24) we can take the group isomorphic to Lp via the isomorphism
Gp ' Gp. Then we have dimLp = (g − 2c)2 + 2(2c2 + c). The desired equation
follows from (24) and the formulas

] Sp2m(Fq) = q2m2+m
m∏

i=1

(1 − q−2i) and ] Um(Fq) = qm2
m∏

i=1

(1 − (−1)iq−i)

(cf. [4, Chapter 1], where the notation Um(Fq2) is used instead of Um(Fq)).

Corollary 3.5.5. If w ∈ IW
(c)
g with c ≤ bg/2c, then Sw is reducible except

possibly for small p.

Proof. Set w′ = r(w). Corollary 3.5.1 says that the Hecke action on the set of
connected components of Jw′ is transitive. Since the Hecke action stabilizes Sw,
the number of connected components of Sw is greater than or equal to that of
Jw′ . Clearly we have limp→∞ Hg,c ≥ limp→∞ mg,c = ∞. Hence Sw is reducible
for sufficiently large p.
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