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Abstract

We study the structure of the moduli space of principally polarized abelian varieties in character-
istic p. In this paper we determine the configuration of the central streams in the moduli space. As
a corollary of our proof we obtain a new proof of the dimension formula of the central streams.
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1 Introduction

In this paper we study some combinatorial interrelation between symmetric Newton polygons and elemen-
tary sequences, where symmetric Newton polygons are combinatorial data classifying isogeny classes of
quasi-polarized p-divisible groups, and elementary sequences are combinatorial data classifying polarized
truncated Barsotti-Tate groups of level one (we shall give a brief review in §2.2 and §2.3). From this
we deduce some geometrically meaningful results on the structure of the moduli space Ag of principally
polarized abelian varieties over fields of characteristic p > 0.

In [17] Oort defined central leaves and isogeny leaves in the open Newton polygon stratum W 0
ξ for

a symmetric Newton polygon ξ, and showed that a central leaf and an isogeny leaf give an “almost”
product structure on each irreducible component of W 0

ξ ([17], (5.3)). Clearly this result tells us that it is
important to investigate these two leaves in detail in order to know the structure of Ag.

For each symmetric Newton polygon ξ, there is a special central leaf Zξ in Ag which is called the
central stream (cf. §2.4). By definition, the p-divisible group of any geometric fiber of Zξ is minimal of
Newton polygon ξ.

Our main theorem is Theorem 3.1. It would not be appropriate to state the theorem here, because
some technical notations are necessary. What is important is that the theorem produces the following
significant corollaries. Firstly we can determine the configuration of the central streams {Zξ} in Ag

(Corollary 3.2). Secondly we obtain the dimension formula of the central streams (Corollary 3.4), which
has been obtained by Oort and Chai-Oort (see [20]). Finally we give a contribution (Corollary 3.6) to
Oort’s conjecture (Conjecture 3.5) on intersections of Newton polygon strata and Ekedahl-Oort strata.

Let us explain the points of our proof. By Oort’s theory [18] on minimal p-divisible groups, the central
stream Zξ is nothing but the Ekedahl-Oort stratum Sϕξ

for a certain elementary sequence ϕξ (cf. §2.4).
Thus our problem deals with the configuration of a certain class of Ekedahl-Oort strata. We emphasize
here that there are two difficulties to solve this problem. One is that we can compute ϕξ explicitly for each
given example, but do not yet have a general formula. The other one is that we need some complicated
combinatorics to show Sϕ′ ⊂ Sϕ, denoted by ϕ′ ⊂ ϕ, for elementary sequences ϕ′ and ϕ. For the former,
we show some beautiful inductive formulas of ϕξ’s instead of an explicit general formula. For the latter,
we use a sufficient condition for ϕ′ ⊂ ϕ, which we can check more easily. From these partial answers, we
can show ϕζ ⊂ ϕξ for any symmetric Newton polygons ζ and ξ with ζ ≺ ξ.
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Notations. We fix once for all a rational prime p. All base fields and all base schemes will be in
characteristic p. We write N = Z>0 the set of natural numbers. For non-negative integers m, n we denote
by gcd(m,n) the greatest common divisor where for convenience we set gcd(m, 0) = gcd(0, m) = m for
∀m ∈ Z≥0. For x ∈ R, let bxc be the biggest integer ≤ x and dxe the smallest integer ≥ x. For a, b ∈ R
with a ≤ b, we denoted by [a, b] the set {x ∈ R | a ≤ x ≤ b} and by [a, b) the set {x ∈ R | a ≤ x < b}.

2 Stratifications

In this section, we start with reviewing the definition of the Newton polygon stratification, the Ekedahl-
Oort stratification and the central streams, and some facts that we shall use later on.

2.1 Dieudonné theory

Let K be a perfect field of characteristic p and W (K) the ring of Witt vectors with coordinates in K.
Let AK be the p-adic completion of the associative ring

W (K)[F ,V]/(Fx − xρF ,Vxρ − xV,FV − p,VF − p,∀x ∈ W (K))

with the Frobenius automorphism ρ of W (K). A Dieudonné module over W (K) is a left AK-module which
is finitely generated as a W (K)-module. There is a canonical categorical equivalence D (the covariant
Dieudonné functor) from the category of p-torsion finite commutative group schemes (resp. p-divisible
groups) over K to the category of Dieudonné modules over W (K) which are of finite length (resp. free
as W (K)-modules). We have D(F ) = V and D(V ) = F for the Frobenius F and the Verschiebung V on
finite commutative group schemes (resp. p-divisible groups).

2.2 The NP-stratification

A pair (m,n) of non-negative integers with gcd(m,n) = 1 is called a segment. For a segment (m,n),
we define a p-divisible group Gm,n over Fp by D(Gm,n) = AFp/AFp(Fm − Vn). The slope of Gm,n (or
% = (m,n)) is is defined to be λ(%) := n/(m + n). (Caution: this slope is called the V -slope (or the
F-slope); in some papers the F -slope (= the V-slope) is used, where the slope of Gm,n is defined to
be m/(m + n).) A Newton polygon is a formal sum %1 + · · · + %t of segments. Arranging ρi’s so that
λ(%1) ≤ λ(%2) ≤ · · · ≤ λ(%t), we regard the Newton polygon as the line graph passing through P0, . . . , Pt

in this order, where we put Pj := (
∑j

i=1(mi +ni),
∑j

i=1 ni) for 0 ≤ j ≤ t. The point Pj is called the j-th
breaking point for 0 < j < t. (Caution: for 0 < j < t we call Pj a breaking point even if λ(%i) = λ(%i+1);
we shall call Pj a true breaking point if λ(%i) 6= λ(%i+1).) For two Newton polygons ξ, ζ with the same
end point, we say ζ ≺ ξ if every point of ζ is not below ξ.

By the Dieudonné-Manin classification ([11] and [2]), for any p-divisible group G over a field K
of characteristic p, there is an isogeny over an algebraically closed field containing K from G to the
direct sum of Gmi,ni for some finite set of segments %i = (mi, ni). Thus we have a Newton polygon
%1 + · · · + %t, which is denoted by NP(G). For an abelian variety X, we have its Newton polygon
NP(X) := NP(X[p∞]). By [14], Theorem 19.1, the p-divisible group Xt[p∞] of the dual abelian variety
Xt is canonically isomorphic to the Serre dual of X[p∞]; this implies that the Newton polygon NP(X) is
symmetric, i.e., λ(%i) + λ(%t+1−i) = 1 for all 0 ≤ i ≤ t (cf. [2], Chapter V, 3). Also see [11], Chapter VI,
3 for an abelian variety over a finite field.

For a symmetric Newton polygon ξ of height 2g, we define its NP-stratum by

Wξ = {(X,µ) ∈ Ag | NP(X) ≺ ξ},
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which is a closed subset of Ag by Grothendieck and Katz ([9], Theorem 2.3.1 on p. 143); we consider
it as a closed subscheme of Ag by giving it the reduced induced scheme structure. We define the open
NP-stratum by

W 0
ξ = {(X,µ) ∈ Ag | NP(X) = ξ},

which is a locally closed subset of Ag (with reduced induced scheme structure).

2.3 The EO-stratification

The main reference for the EO-stratification is [15]. See [3], [4], [12], [13] and [21] for a beautiful
formulation in terms of the Weyl group. To use Weyl groups is starting to become more mainstream, but
in this paper we follow the terminology in [15], because we can then more easily get information about
Ekedahl-Oort strata (cf. Theorem 2.5 (2) and (3) with Definition 2.4 (1)).

Let K be a field of characteristic p. A finite commutative group scheme G over K is said to be a
truncated Barsotti-Tate group of level one (BT1) over K if it is annihilated by p and Im(V : G(p) →
G) = Ker(F : G → G(p)). A final sequence of length d is a map ψ : {0, 1, . . . , d} → {0, 1, . . . , d} satisfying
ψ(0) = 0 and ψ(i − 1) ≤ ψ(i) ≤ ψ(i − 1) + 1 for 1 ≤ i ≤ d. We frequently write ψ = (ψ(1), . . . , ψ(d)).

Let G be a BT1 over K. For any subgroup scheme G′ of G over K and for any word w of V, F−1, we
define w ·G′ inductively by V ·G′ := V G′(p) and F−1 ·G′ := F−1(G′(p)∩FG). Then there exists a unique
final sequence ψ of a certain length d such that for any word w of V, F−1 we have ψ(length(w · G)) =
length(V w · G), see [15], (2.4). Thus we have a canonical map

FS : {BT1 of length d over K}/K-isom. −→ {final seq. of length d}.

The following theorem was first obtained by Kraft [10]:

Theorem 2.1. If K is algebraically closed, then FS is bijective.

Let K be a perfect field. A polarized BT1 over K is a pair (G, 〈 , 〉), where G is a BT1 over K and
〈 , 〉 is a non-degenerate alternating pairing on D(G) satisfying 〈Fx, y〉 = 〈x,Vy〉ρ for all x, y ∈ D(G), see
[15], (9.2). A symmetric final sequence of length 2g is a final sequence of length 2g satisfying ψ(2g− i) =
g +ψ(i)− i. An elementary sequence of length g is the sequence obtained by restricting a symmetric final
sequence of length 2g to {0, . . . , g}. (Abstractly, an elementary sequence of length g is nothing but a
final sequence of length g.) Note any symmetric final sequence is uniquely determined by its elementary
sequence.

For a polarized BT1 (G, 〈 , 〉), its final sequence FS(G) is symmetric (cf. [15], (5.4)). Hence we have
a canonical map

ES : {pol. BT1 of length 2g over K}/K-isom. −→ {elementary seq. of length g}.

We recall [15], (9.4) (see [13], (5.4) for a formulation in terms of the Weyl group):

Theorem 2.2. If K is algebraically closed, then ES is bijective.

For each elementary sequence ϕ of length g, the EO-stratum Sϕ is defined to be the subset of Ag

consisting of points y ∈ Ag where y comes over some field from a principally polarized abelian variety Xy

such that ES(Xy[p]) = ϕ, see [15], (5.11). As shown in [15], (3.2), Sϕ is locally closed in Ag; we consider
it as a locally closed subscheme by giving it the reduced induced scheme structure.

Let us recall the inverse maps of FS and ES respectively. For this the notion of final types is useful:

Definition 2.3. (1) A final type of length d is a pair (B, δ), where B is a totally ordered finite set with
]B = d and δ is a map B → {0, 1}. We often write δ = (δ(b1), . . . , δ(bd)), where B = {b1 < · · · < bd}.

(2) Let (B, δ) be a final type of length 2g with B = {b1 < · · · < b2g}. Let ∨ : B → B be the map
sending bi to b∨i := b2g+1−i. We say (B, δ) to be symmetric if δ(b) + δ(b∨) = 1 for all b ∈ B.
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For any (symmetric) final sequence ψ of length d, we define a (symmetric) final type (B, δ) by B =
{b1 < . . . < bd} and

δ(bi) = 1 − ψ(i) + ψ(i − 1). (2.3.1)

Clearly this correspondence gives a bijection from the set of (symmetric) final sequences to the set of
(symmetric) final types.

Let ψ be the final sequence of length d and (B, δ) the associated final type. Write B = {b1 < · · · < bd}.
In order to see the inverse map of FS, it suffices to describe the Dieudonné module D(G) of a BT1 G with
FS(G) = ψ. It is known (see the proof of [15], (9.4)) that D(G) is isomorphic to the Dieudonné module
Nψ which is a K-vector space with a basis indexed by B, simply say

Nψ =
d⊕

i=1

Kbi (2.3.2)

with the F and V-operations defined by

F(bi) :=

{
π(bi) if δ(bi) = 0,

0 otherwise,
V(π(bi)) :=

{
−(−1)δ(π(bi))bi if δ(bi) = 1,

0 otherwise,
(2.3.3)

where π is the bijection
πδ : {b1, . . . , bd} −−−−→ {b1, . . . , bd} (2.3.4)

defined by sending bi to bψ(i) if δ(bi) = 0 and to bψ(d)+i−ψ(i) if δ(bi) = 1. If G is a polarized BT1,
then ψ = FS(G) is a symmetric final sequence. It was shown in [15], (9.4) that the polarized Dieudonné
module D(G) is isomorphic to Nψ with the polarization 〈 , 〉 defined by 〈bi, b

∨
j 〉 = (−1)δ(bi) if i = j and

zero otherwise.
Recall that there are two natural partial orderings on the set of elementary sequences of length g.

Definition 2.4. Let ϕ and ϕ′ be two elementary sequences of length g.

(1) We say ϕ′ ≤BC ϕ if ϕ′(i) ≤ ϕ(i) for all i = 1, . . . , g. This order is called the Bruhat-Chevalley order.

(2) We say ϕ′ ⊂ ϕ if Sϕ′ is contained in the Zariski closure Sϕ of Sϕ in Ag.

We shall use results of [15]:

Theorem 2.5. (1) Sϕ is not empty and is quasi-affine for every ϕ.

(2) Any irreducible component of Sϕ has dimension |ϕ| :=
∑g

i=1 ϕ(i).

(3) ϕ′ ≤BC ϕ implies ϕ′ ⊂ ϕ.

(4) ϕ′ ⊂ ϕ is equivalent to Sϕ′ ∩ Sϕ 6= ∅.

Recall [3], Theorem 11.5 (with [1], (3.7), Step 2, also see [5], §4):

Theorem 2.6. Sϕ is irreducible if Sϕ 6⊂ Wσ.

For two polarized BT1’s G and G′, the direct sum G⊕G′ becomes a polarized BT1 canonically. Let ϕ
and ϕ′ be elementary sequences of G and G′ respectively. We denote by ϕ⊕ ϕ′ the elementary sequence
of G ⊕ G′. Clearly Sϕ × Sϕ′ ⊂ Sϕ⊕ϕ′ holds.

Definition 2.7. Let ϕ and ϕ′ be two elementary sequences. We say ϕ′ ≤ ϕ if there exist elementary
sequences ϕ0, . . . , ϕl for some l with 0 ≤ l < ∞ such that

(1) ϕ′ = ϕ0 and ϕ = ϕl,

(2) for each i (0 ≤ i < l), there are elementary sequences α, β and γ (depending on i) such that
ϕi = α ⊕ γ and ϕi+1 = β ⊕ γ with α <BC β.
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Lemma 2.8. (1) ϕ′ ≤BC ϕ =⇒ ϕ′ ≤ ϕ.

(2) ϕ′ ≤ ϕ =⇒ ϕ′ ⊂ ϕ.

Proof. (1) follows from the definition. (2) It suffices to show that ϕ1 ⊂ ϕ2 for ϕ1 = α⊕γ and ϕ2 = β⊕γ
with α <BC β. Clearly we have Sα × Sγ ⊂ Sβ × Sγ ⊂ Sβ × Sγ ⊂ Sϕ2 . Here we used Theorem 2.5 (3) to
see the first inclusion. Since Sα × Sγ is not empty (Theorem 2.5 (1)) and is contained in Sϕ1 , we have
Sϕ1 ∩ Sϕ2 6= ∅. Then ϕ1 ⊂ ϕ2 follows from Theorem 2.5 (4).

Remark 2.9. (1) ϕ′ ≤ ϕ does not imply ϕ′ ≤BC ϕ. Indeed put ϕ = (0, 0, 1, 2, 2) and ϕ′ = (0, 1, 1, 1, 1).
Since ϕ = (0, 1, 1) ⊕ (0, 1) and ϕ′ = (0, 1, 1) ⊕ (0, 0), we have ϕ′ ≤ ϕ. However obviously ϕ′ 6≤BC ϕ.

(2) ϕ′ ⊂ ϕ does not imply ϕ′ ≤ ϕ. See [3], Example 9.5 (iii): for ϕ = (0, 0, 1, 2, 3, 3) and ϕ′ =
(0, 1, 1, 2, 2, 2) we have ϕ′ ⊂ ϕ and ϕ′ 6≤ ϕ.

(3) Quite recently in [22] Wedhorn determined when ϕ′ ⊂ ϕ in terms of Weyl groups. In this paper we
do not use his result.

2.4 Central streams

For a segment (m,n), we define a p-divisible group Hm,n over Fp (cf. [8], 5.3) by

D(Hm,n) =
m+n−1⊕

i=0

Zpxi (2.4.1)

with F ,V operations: Fxi = xi+n and Vxi = xi+m, where xi (i ∈ Z≥m+n) are defined as satisfying
xi+m+n = pxi for i ∈ Z≥0. For a Newton polygon ξ =

∑t
i=1(mi, ni), we write H(ξ) =

⊕t
i=1 Hmi,ni ,

which is called the minimal p-divisible group defined by ξ. Note the Newton polygon of H(ξ) equals ξ.
For any symmetric Newton polygon ξ, we set

Zξ = {x = (Ax, µx) ∈ Ag | Ax[p∞] ⊗ Ω ' H(ξ) ⊗ Ω, for some Ω = Ω ⊃ k(x)},

which is a closed subset of W 0
ξ by [17], (3.3); we consider it as a closed subscheme of W 0

ξ by giving it
the reduced induced scheme structure. We call Zξ the central stream defined by ξ, see [17], (3.10). By
[17], (3.7), there exists a principal quasi-polarization µ on H(ξ), which is unique up to isomorphism of
H(ξ). We set ϕξ := ES(H(ξ)[p], µ[p]). Then Oort’s theory [18], (1.2) on minimal p-divisible groups shows
that the central stream Zξ coincides with the EO-stratum Sϕξ

. By Theorem 2.6, Zξ is irreducible if ξ
is not supersingular σ. Let χ be the ordinary Newton polygon; then we have ϕχ = (1, . . . , g); hence
dimZχ = |ϕχ| = g(g + 1)/2 by Theorem 2.5 (2). For the supersingular case σ, we have ϕσ = (0, . . . , 0);
hence the dimension of any irreducible component of Zσ is |ϕσ| = 0.

3 Main theorem

For two symmetric Newton polygons ξ and ζ of height 2g with ζ ≺ ξ, we set

c(ξ; ζ) = 2
∑

1≤i≤g

(ζ(i) − ξ(i))

and c(ξ) = c(ξ; σ). This is an easy way to define the value c(ξ), but is not sufficient for doing computations,
see [20], (5.3) for various alternative ways to compute c(ξ).

As our main result in this paper, we shall show:

Theorem 3.1. Let ξ and ζ be two symmetric Newton polygons with ζ ≺ ξ. Then there exists a series
ϕ0, . . . , ϕc(ξ;ζ) of elementary sequences of length g such that

ϕζ = ϕ0 < ϕ1 < · · · < ϕc(ξ;ζ) = ϕξ.
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It is not too much to say that this theorem is for the three corollaries below. The corollaries are more
meaningful than this theorem itself. Let Zξ denote the Zariski closure of Zξ in Ag. Then we have

Corollary 3.2. Zζ ⊂ Zξ if and only if ζ ≺ ξ.

Proof. Assume ζ ≺ ξ. Theorem 3.1 says in particular ϕζ ≤ ϕξ. Then we have ϕζ ⊂ ϕξ by Lemma 2.8
(2). The “only if”-part follows from Grothendieck-Katz ([9], Theorem 2.3.1).

Remark 3.3. Corollary 3.2 was expected in [17], (6.10).

We give a new proof of the dimension formula of Zξ, which was first obtained in [20].

Corollary 3.4. We have dim(Zξ) = c(ξ).

Proof. Let χ be the ordinary Newton polygon. We know dim(Zχ) = g(g + 1)/2 = c(χ) and dim(Zσ) =
0 = c(σ). By Theorem 3.1 we have dim(Zξ) − dim(Zζ) ≥ c(ξ; ζ) for any symmetric Newton polygons
ζ ≺ ξ. Applying this to σ ≺ ξ and ξ ≺ χ, we have c(σ) + c(ξ; σ) ≤ dim(Zξ) ≤ c(χ) − c(χ; ξ). Since
c(σ) + c(ξ; σ) = c(ξ) = c(χ) − c(χ; ξ) by definition, we obtain dim(Zξ) = c(ξ).

In [17], (6.9) Oort conjectured

Conjecture 3.5. If W 0
ξ ∩ Sϕ 6= ∅, then Zξ ⊂ Sϕ.

For an elementary sequence ϕ, let ξϕ be the Newton polygon of a generic point of Sϕ. (This definition
is independent of the choice of the generic point. Indeed by Theorem 2.6, Sϕ is irreducible if it is not
contained in Wσ, and otherwise every generic point of Sϕ has the supersingular Newton polygon σ.)

Now clearly W 0
ξϕ

∩Sϕ 6= ∅ holds; hence Conjecture 3.5 implies Zξϕ ⊂ Sϕ. Let us show that the inverse
holds:

Corollary 3.6. Zξϕ ⊂ Sϕ implies Conjecture 3.5.

Proof. Assume Zξϕ ⊂ Sϕ. If W 0
ξ ∩ Sϕ 6= ∅, we have ξ ≺ ξϕ by Grothendieck and Katz ([9], Theorem

2.3.1); then Corollary 3.2 implies Zξ ⊂ Zξϕ , which is contained in Sϕ by the assumption.

Remark 3.7. In [7] we shall prove Zξϕ ⊂ Sϕ.

4 Direct sums of BT1’s

As written in §1, we need to investigate the final sequence ψξ of H(ξ)[p] =
⊕

i Hmi,ni [p], where ξ =∑
i(mi, ni). Although we can not give a general formula of ψξ, it is possible to compute ψξ for each

example. In this section, we explain a way to determine the type of the direct sum of BT1’s in term of
final types, and show some properties of ψξ used later on.

4.1 A basic fact on final types

Let (B, δ) be a final type. The purpose of this subsection is to prove

Proposition 4.1. Let π be an automorphism of B such that π(b′) > π(b) ⇔ δ(b′) > δ(b) for any b, b′ ∈ B
with b′ < b. Then π coincides with πδ defined in (2.3.4).

We need a lemma:

Lemma 4.2. Let π be as in the proposition above. Let b and b′ be elements of B.

(1) If δ(b′) < δ(b), then π(b′) < π(b).

(2) If δ(b) = δ(b′), then b′ < b ⇔ π(b′) < π(b).
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Proof. (1) Suppose δ(b′) < δ(b). Obviously we have b 6= b′. If b′ > b, then π(b′) < π(b) holds. Thus we
may assume b′ < b. Since δ(b′) ≤ δ(b), we have π(b′) ≤ π(b). Since π is an automorphism and b 6= b′, we
have π(b′) < π(b).

(2) Suppose δ(b) = δ(b′). First we prove b′ < b ⇒ π(b′) < π(b). Assume b′ < b. Since δ(b) ≤ δ(b′), we
get π(b′) ≤ π(b); by b′ 6= b we have π(b′) 6= π(b); hence π(b′) < π(b). Exchanging the roles of b and b′, we
have b′ > b ⇒ π(b′) > π(b). Also obviously b′ = b ⇒ π(b′) = π(b); thus we have b′ ≥ b ⇒ π(b′) ≥ π(b);
this means b′ < b ⇐ π(b′) < π(b).

Proof of Proposition 4.1. Let B = {b1 < · · · < bd} and set B− = {b ∈ B | δ(b) = 0} and B+ = {b ∈
B | δ(b) = 1}. Put d0 = ]B−. Let f− and f+ be the order preserving bijections

f− : B− −−−−→ {b1, . . . , bd0},

f+ : B+ −−−−→ {bd0+1, . . . , bd}.
(4.1.1)

Then Lemma 4.2 shows that π has to satisfy

π(b) =

{
f−(b) if b ∈ B−,

f+(b) if b ∈ B+.
(4.1.2)

Note π is uniquely determined by (4.1.2). Hence we obtain πδ = π, since πδ in (2.3.4) also satisfies the
condition that πδ(b′) > πδ(b) ⇔ δ(b′) > δ(b) for any b, b′ ∈ B with b′ < b.

4.2 Direct decompositions of final types

We investigate direct decompositions of final types.
Let B = (B, δ) be a final type. Let C be a subset of B and set ε = δ|C . We call C = (C, ε) a final

subtype of B if π(C) = C, in which case we have π|C = πε by Proposition 4.1.

Definition 4.3. We call B indecomposable, if B has no proper final subtype, or equivalently B consists
of one π-cycle. (Note that B is indecomposable if and only if the BT1 associated to B is indecomposable,
see [19], (1.5).)

Let B = (B, δ) be a final type and C = (C, ε) a final subtype of B. Put C ′ = B \ C. Then clearly
π(C ′) = C ′ holds; hence we have a final subtype C′ = (C ′, δ|C′) of B. In this case we write B as C ⊕ C′.
Let G, H and H ′ be the BT1’s associated to B, C and C′ respectively. Then we have G ' H ⊕ H ′ by
(2.3.2) and (2.3.3).

Let I be the set of isomorphism classes of indecomposable final types. A multiplicity function on I
is a map e : I → Z≥0 sending almost all to zero. For every final type B = (B, δ), there is a unique
multiplicity function e on I such that B =

⊕
C∈I C⊕e(C).

4.3 Computation of direct sums of final types

Now we present a way to compute direct sums of final types. The goal is to prove Corollary 4.8.
Before getting into the details, we give a remark. In [15], (2.2) we find an ordering on the set of words

of F and V−1 (cyclic infinite words will be used below), which is closely related to our computation. If
we associate such words to the 2-adic expansions of elements of [0, 1] ⊂ R by assigning 0 to F and 1 to
V−1, then the ordering coincides with the usual ordering on R. The following formulation is based on
this fact.

Let D be the ordered subset of [0, 1] consisting of u ∈ [0, 1] with cyclic 2-adic expansion u =
∑∞

l=1 al2−l

(al = 0 or 1), where “cyclic” means that for some d ∈ N we have al+d = al for all l ≥ 1; taking a minimal
one among these d’s, we write u = da1, . . . , adc and call d the period of u. Let U be the product D × N
with the lexicographic ordering. We define the partition map γ : U → {0, 1} by sending (u, v) ∈ D×N to
ad, where u = da1, . . . , adc. We define an automorphism τ of D by τ(da1, . . . , adc) = dad, a1, . . . , ad−1c.
This is extended to the automorphism of U defined by sending (u, v) to (τ(u), v), which is denoted by
the same symbol τ .
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Lemma 4.4. Let B be a finite subset of U which is τ -stable. Put δ = γ|B. Then (B, δ) is a final type
such that πδ = τ |B.

Proof. Let b = (u, v) and b′ = (u′, v′) be elements of B. Write the minimal cyclic expressions of u and
u′ as da1, . . . , adc and da′

1, . . . , a
′
d′c respectively. Assume b′ < b. By Proposition 4.1, it suffices to show

τ(b′) > τ(b) ⇔ γ(b′) > γ(b). Note τ(b) = (ad + 2−1u, v) and γ(b) = ad; hence we have to show

(a′
d′ + 2−1u′, v′) > (ad + 2−1u, v) ⇐⇒ a′

d′ > ad. (4.3.1)

From the assumption b′ < b, we have (1) u′ < u or (2) u′ = u and v′ < v. For (1), clearly a′
d′ + 2−1u′ >

ad + 2−1u is equivalent a′
d′ > ad. For (2), clearly a′

d′ + 2−1u′ = ad + 2−1u; then both of v′ > v and
a′

d′ > ad are false and therefore they are equivalent.

From now on, we shall show that any final type can be constructed as in Lemma 4.4. First let us
check the indecomposable case. For an indecomposable final type B = (B, δ) of length d with π := πδ,
we define a map

νB : B −−−−→ D (4.3.2)

by sending b to
∑∞

l=1 δ(π−l(b))2−l.

Lemma 4.5. Let B = (B, δ) be an indecomposable final type. If b, b′ ∈ B satisfy δ(πi(b)) = δ(πi(b′)) for
all i ∈ N, then we have b = b′. In other words νB is injective.

Proof. We assume b′ < b and derive a contradiction. Since B is indecomposable, there exists l ∈ N such
that b′ = πl(b). The conditions δ(πj(b)) = δ(πj(b′)) for all j < i imply πi(b′) < πi(b) by using Lemma
4.2 (2) recursively. This means πi+l(b) < πi(b) for all i ∈ N, which contradicts ]B < ∞.

Lemma 4.6. Let B = (B, δ) be an indecomposable final type of length d and set ν = νB. Then we have

(1) δ = γ ◦ ν : B −−−−→ D −−−−→ {0, 1};

(2) ν ◦ π = τ ◦ ν;

(3) ν(b′) < ν(b) if and only if b′ < b.

Proof. By Lemma 4.5, the period of ν(b) is equal to d. Hence (1) follows from the straightforward
calculation: (γ ◦ ν)(b) = γ(dδ(π−1(b)), . . . , δ(π−d(b))c) = δ(π−d(b)) = δ(b). (2) is obvious by definition.
(3) By the injectivity of ν, it suffices to show ν(b′) < ν(b) ⇒ b′ < b. Note ν(b′) < ν(b) means that there
is l ∈ N such that (a) δ(π−i(b′)) = δ(π−i(b)) for all 1 ≤ i < l and (b) δ(π−l(b′)) < δ(π−l(b)). (b) implies
π−l+1(b′) < π−l+1(b) by Lemma 4.2 (1). Then (a) shows b′ < b by using Lemma 4.2 (2) recursively.

This lemma says that any indecomposable final type can be obtained as in Lemma 4.4, and also
implies that there is a canonical bijection from the set of τ -orbits in D to the set I of isomorphism classes
of indecomposable final types.

For a multiplicity function e on I, we consider the composition map

ẽ : D −−−−→ D/〈τ〉 ∼−−−−→
can

I
e−−−−→ Z≥0 (4.3.3)

and put
U≤e = {(x, y) ∈ U | y ≤ ẽ(x)}; (4.3.4)

then U≤e is τ -stable and U≤e is a finite set; hence Lemma 4.4 defines a final type

U≤e = (U≤e, γ|U≤e). (4.3.5)

Clearly U≤e is decomposed into the direct sum
⊕

C∈I C⊕e(C). Thus we have

Proposition 4.7. For any final type B, there exists a unique multiplicity function e on I such that B is
isomorphic to U≤e.
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This proposition tells us a concrete way to compute the direct sum of final types:

Corollary 4.8. (1) Let B be a final type of the form C⊕e for a certain indecomposable final type C. Let
B = (B, δ) and C = (C, ε). Write (C(j), ε(j)) = (C, ε) for 1 ≤ j ≤ e and C(j) = {c(j)

1 < · · · < c
(j)
d }.

Then B can be given by

B = {c(1)
1 < · · · < c

(e)
1 < c

(1)
2 < · · · < c

(e)
2 < · · · · · · < c

(1)
d < · · · < c

(e)
d }

and δ(c(j)
i ) = ε(j)(c(j)

i ).

(2) Let C(j) = (C(j), ε(j)) be final types. We write C(j) = {c(j)
1 < · · · < c

(j)
dj

} and set ν(j) = νC(j) .
Assume any pair of distinct C(j)’s have no common indecomposable factor. Set B = (B, δ) =⊕

j C(j). Then B can be given as follows. First B =
⊔

j C(j) as a set and the ordering on B is
given by

b < b′ ⇐⇒

{
b < b′ for b, b′ ∈ C(j),

ν(j)(b) < ν(j′)(b′) for b ∈ C(j) and b′ ∈ C(j′) with j 6= j′,

and the partition map δ is given by δ(c(j)
i ) = ε(j)(c(j)

i ).

Example 4.9. For the final sequences ψ(1) = (0, 1, 2) and ψ(2) = (0, 1), let us compute ψ(1) ⊕ ψ(2). Let
C(i) = (C(i), ε(i)) be the final type of ψ(i). Write C(1) = {c(1)

1 < c
(1)
2 < c

(1)
3 } and C(2) = {c(2)

1 < c
(2)
2 }. By

the rule (2.3.1) we have (
ε(1)(c(1)

1 ), ε(1)(c(1)
2 ), ε(1)(c(1)

3 )
)

= (1, 0, 0),(
ε(2)(c(2)

1 ), ε(2)(c(2)
2 )

)
= (1, 0),

and by (2.3.4) or (4.1.2) the automorphisms πε(i) of C(i) are given by

c
(1)
1 44c

(1)
2

uu
c
(1)
3

uu
c
(2)
1 33 c

(2)
2 .

tt

From the definition (4.3.2) of ν(i) := νC(i) , we have
ν(1)(c(1)

1 ) = d0, 0, 1c,
ν(1)(c(1)

2 ) = d0, 1, 0c,
ν(1)(c(1)

3 ) = d1, 0, 0c,

{
ν(2)(c(2)

1 ) = d0, 1c,
ν(2)(c(2)

2 ) = d1, 0c.

Let B = (B, δ) be the direct sum C(1) ⊕ C(2). Then by Corollary 4.8 (2), we have

B = {c(1)
1 < c

(1)
2 < c

(2)
1 < c

(1)
3 < c

(2)
2 }

with δ = (1, 0, 1, 0, 0). Thus we obtain ψ(1) ⊕ ψ(2) = (0, 1, 1, 2, 3) by (2.3.1). Note πδ is given by

c
(1)
1

22c
(1)
2

uu
c
(2)
1

22c
(1)
3

ss
c
(2)
2 .

rr

Since we will see ψ(1) = ψ(2,1) and ψ(2) = ψ(1,1) in Lemma 4.13, we have ψ(2,1)+(1,1) = (0, 1, 1, 2, 3).

4.4 The first jumping element of a non-étale final type

We say that a final type (B, δ) is not étale (or non-étale) if δ 6= (1, . . . , 1). Note that a BT1 G is not étale
(i.e., G is not isomorphic to a product of copies of Z/pZ) if and only if its final type is not étale.

Let us define the first jumping element of a non-étale final type. This is a very simple notion, but it
plays important roles in this paper. In particular we shall see in Corollary 4.18 that the first jumping
elements are beautifully arranged in the direct sum of minimal non-étale final types, which is a key step
of our proof of the main theorem.
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Definition 4.10. Assume B = (B, δ) is not étale. Let ψ be the final sequence of B.

(1) The first jumping element of B is the element b ∈ B satisfying δ(b) = 0 and δ(b′) = 1 for all b′ < b.

(2) The first jumping number of ψ is the number J (1 ≤ J ≤ d) satisfying ψ(J − 1) = 0 and ψ(J) = 1:

ψ = (0, . . . , 0, 1︸ ︷︷ ︸
J

, ∗, . . . , ∗).

Note bJ is the first jumping element of B, where we write B = {b1 < . . . < bd}.

Let C = (C, ε) be a final subtype of B.

Definition 4.11. Assume C is not étale. The first jumping element of C considered as an element of B
is called the first jumping element of C in B.

We will use the obvious lemma:

Lemma 4.12. Let B =
⊕t

i=1 B(i) be a decomposition of B into some final subtypes. Assume all B(i) are
not étale. Let bJ(i) be the first jumping element of B(i) in B. Then the first jumping element bJ of B is
equal to min{bJ(1) , . . . , bJ(t)}.

4.5 Minimal final types

Now we investigate the final sequence ψξ of H(ξ)[p] =
⊕

i Hmi,ni [p]. Let us begin with studying the case
Hm,n[p], where (m,n) is a pair of non-negative integers. The following was shown in the proof of [5],
Lemma 5.12:

Lemma 4.13. We have ψ(m,n) = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . ,m︸ ︷︷ ︸
m

).

Let Bm,n = (Bm,n, δm,n) denote the final type of ψm,n. By Lemma 4.13 and (2.3.1) we have

δm,n = (1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
m

). (4.5.1)

We call Bm,n minimal of type (m, n). By (4.1.2) we have:

Lemma 4.14. Let (B, δ) be the minimal final type Bm,n with B = {b1 < · · · < bm+n} and set π = πδ.
Let ρ be the bijection from B to Z/(m + n)Z defined by mapping bi to the class of i− 1. Then we have a
commutative diagram

B
ρ−−−−→ Z/(m + n)Z

π

y y−n

B −−−−→
ρ

Z/(m + n)Z.

This lemma gives us a simple proof of the following fact (cf. [19], (1.5) and (1.8)):

Corollary 4.15. If gcd(m,n) = 1, then Bm,n is indecomposable.

Proof. In the notation of Lemma 4.14, obviously B consists of one π-cycle. This means that Bm,n is
indecomposable.

By Corollary 4.8, we need only to have the formula of νB for each B = Bm,n with gcd(m,n) = 1, in
order to calculate the final sequence ψξ of H(ξ)[p] for a concretely given ξ.
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Lemma 4.16. Assume gcd(m,n) = 1. Let B = Bm,n and write B = (B, δ) with B = {b1 < · · · < bm+n}.
Then for all 1 ≤ r ≤ m + n we have

νB(br) =


∞∑

l=1

2−b{(m+n)l+n−r}/nc if n 6= 0,

0 otherwise.

Proof. If n = 0, we have m = 1 by gcd(m,n) = 1; then B = {b1}, δ(b1) = 0 and π(b1) = b1; hence
νB(b1) = 0. Assume n 6= 0. By Lemma 4.14 we get π−i(br) = br+ni for all i ∈ N. Hence δ(π−i(br)) = 1 if
and only if for some l ∈ N we have (m+n)l < r+ni ≤ (m+n)l+n, namely i = b{(m+n)l+n−r}/nc.

From now on we collect some partial results on the final sequence ψξ, or equivalently on the direct
sum of Bmi,ni ’s.

Proposition 4.17. Let (m1, n1), . . . , (mt, nt) be pairs of integers ≥ 0 with gcd(mi, ni) = 1 and set
λi = ni/(mi + ni). Assume λ1 < · · · < λt. For 1 ≤ i ≤ t, let B(i) = Bmi,ni and write B(i) = (B(i), δ(i))
with B(i) = {b(i)

1 < · · · < b
(i)
mi+ni

}. Let B = (B, δ) be their direct sum
⊕

i B(i). Then for ε ∈ {0, 1} and
for integers α, β satisfying 1 ≤ αni + βmi + ε ≤ mi + ni for every 1 ≤ i ≤ t, we have

b
(1)
αn1+βm1+ε < · · · < b

(t)
αnt+βmt+ε (4.5.2)

in B =
⊔

i B(i).

Proof. Put ν(i) := νB(i) . By Lemma 4.16, we have

ν(i)(b(i)
αni+βmi+ε) =


∞∑

l=1

2−b(l−β)/λic−α+β+1 for ε = 0,

∞∑
l=1

2−b(l−β)/λi+(ni−1)/nic−α+β =
∞∑

l=1

2−d(l−β)/λie−α+β for ε = 1.

(Here these sums are regarded as 0 if λi = 0.) Hence λ1 < · · · < λt implies ν(1)(b(1)
αn1+βm1+ε) < · · · <

ν(t)(b(t)
αnt+βmt+ε). By Corollary 4.8 (2) we have the inequality (4.5.2).

Corollary 4.18. In the same notation as in Proposition 4.17, we assume mt ≥ 1 in addition. Then all
B(i) are not étale and we have b

(1)
J1

< · · · < b
(t)
Jt

, where Ji is the first jumping number ni + 1 of ψmi,ni .

Proof. By λi < λt < 1, we get mi ≥ 1 for all 1 ≤ i ≤ t. This means all B(i) are not étale. Set α = 1,
β = 0 and ε = 1. Then we have 1 ≤ αni + βmi + ε ≤ mi + ni. Applying Proposition 4.17 to this case,
we have b

(1)
J1

< · · · < b
(t)
Jt

.

Lemma 4.19. Let B(i) (i = 1, 2) be the minimal final types Bmi,ni with gcd(mi, ni) = 1. Write B(i) =
(B(i), δ(i)) with B(i) = {b(i)

1 < · · · < b
(i)
mi+ni

}. Then in the direct sum B(1) ⊕ B(2), we have b
(2)
m2 < b

(1)
m1+1.

Proof. This follows from the computation of the first terms of νB(1)(b(1)
m1+1) and νB(2)(b(2)

m2). Indeed since
b{(m1 + n1) + n1 − m1 − 1}/n1c = 1 and b{(m2 + n2) + n2 − m2}/n2c = 2, we have νB(2)(b(2)

m2) <

νB(1)(b(1)
m1+1).

Proposition 4.20. Let B(i) (i = 1, 2) be the minimal final types Bmi,ni with gcd(mi, ni) = 1. Write
B(i) = (B(i), δ(i)) with B(i) = {b(i)

1 < · · · < b
(i)
mi+ni

}. Set λi = ni/(mi + ni) and hi = mi + ni. Assume
λ1 ≤ 1/2 ≤ λ2. Then (B, δ) := B(1) ⊕ B(2) can be given by

(1) B = {b(1)
1 < · · · < b

(1)
m1 < b

(2)
1 < · · · < b

(2)
m2 < b

(1)
m1+1 < · · · < b

(1)
h1

< b
(2)
m2+1 < · · · < b

(2)
h2

},
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(2) δ = (

n1︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸

m1

, 1, . . . , 1︸ ︷︷ ︸
m2

, 0, . . . , 0︸ ︷︷ ︸
n1

, 1, . . . , 1,

m2︷ ︸︸ ︷
0, . . . , 0︸ ︷︷ ︸

n2

).

Proof. (2) follows from (1) and (4.5.1). Let us prove (1). First we consider the case λ1 < 1/2 < λ2. We
use an auxiliary final type C = (C, ε) defined by C = {c1 < c2}, ε(c1) = 1 and ε(c2) = 0 (i.e., C ' B1,1).
By Proposition 4.17, we have b

(1)
m1 < c1 (ε = 0, α = 0, β = 1) and c1 < b

(2)
1 (ε = 1, α = 0, β = 0); hence

b
(1)
m1 < b

(2)
1 . Similarly b

(1)
h1

< c2 (ε = 0, α = 1, β = 1) and c2 < b
(2)
m2+1 (ε = 1, α = 0, β = 1); hence

b
(1)
h1

< b
(2)
m2+1. We showed b

(2)
m2 < b

(1)
m1+1 in Lemma 4.19.

By looking at the relation between B(1) and C in the above argument, we obtain a proof of the case
λ1 < 1/2 = λ2. Similarly we can prove the case λ1 = 1/2 < λ2. The case λ1 = 1/2 = λ2 is obvious by
Corollary 4.8 (1).

Example 4.21. The π-cycles of B3,2 and B1,2 in B3,2 ⊕ B1,2 are as follows:

B3,2 : b
(1)
1

22b
(1)
2

22b
(1)
3

tt
b
(2)
1 b

(1)
4

ss
b
(1)
5

ss
b
(2)
2 b

(2)
3 ,

B1,2 : b
(1)
1 b

(1)
2 b

(1)
3 b

(2)
1

33b
(1)
4 b

(1)
5 b

(2)
2 55 b

(2)
3 .

rr

By Proposition 4.20, we can determine how the elements of Bm1,n1 and Bm2,n2 are shuffled if λ1 ≤
1/2 ≤ λ2. Thus clearly we have

Corollary 4.22. Let η =
∑t

i=1(mi, ni) be a Newton polygon with ni/(mi + ni) ≤ 1/2. Let ξ be the
symmetric Newton polygon s(1, 1) +

∑t
i=1(mi, ni) + (ni,mi) for s ∈ Z≥0. Set m =

∑
i mi and n =

∑
i ni

and g = m + n + s. Put C =
⊕t

i=1 Bmi,ni and B = C ⊕ Bs,s ⊕ C∨ and write C = (C, ε) and B = (B, δ)
with B = {b1 < · · · < b2g}.

(1) The decomposition B = C t Bs,s t C∨ is given by
C = {b1, . . . , bm, bg+1, . . . , bg+n},
Bs,s = {bm+1, . . . , bm+s, bg+n+1, . . . , bg+n+s},
C∨ = {bm+s+1, . . . , bg, bg+n+s+1, . . . , b2g},

(2) The elementary sequence ϕξ of H(ξ)[p] is equal to

(ψη(1), . . . , ψη(m),m − n, . . . ,m − n︸ ︷︷ ︸
n+s

).

Example 4.23. Consider the case η = (m,n) and ξ = (m,n) + s(1, 1) + (n, m). By Lemma 4.13 and
Corollary 4.22 (2), we have

ϕξ = (0, . . . , 0︸ ︷︷ ︸
n

, 1, 2, . . . ,m − n︸ ︷︷ ︸
m−n

,m − n, . . . ,m − n︸ ︷︷ ︸
n+s

). (4.5.3)

5 Quasi-cycles in final types

In §4 we investigated ψξ. Next we have to study the interrelation between ψζ and ψξ for ζ ≺ ξ. In §6
and §7 we shall explain “surgery”, which is a basic tool to produce ψζ from ψξ. By surgery we mean a
procedure to cut π-cycles into some pieces and join the pieces into new cycles, where each piece will be
a quasi-cycle. In this section, after introducing the notion of quasi-cycles, we explain a way to construct
a new final type from a quasi-cycle in §5.2, and we show some basic results on quasi-cycles in minimal
final types in §5.3.
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5.1 Definition of quasi-cycles

Let B = (B, δ) be a final type and set π = πδ.

Definition 5.1. (1) A π-path of length l in B is an ordered subset Γ of B with ]Γ = l + 1 of the form
{πi(x) | 0 ≤ i ≤ l} for some x ∈ B. We write Γ as Γxy, where y = πl(x).

(2) Let Γ = Γxy be a π-path in B. We call Γ a quasi-cycle in B if x 6= y and there is no element z of Γ
satisfying x < z < y or y < z < x. We frequently write Γ as

x

Γ

BBy. (5.1.1)

Example 5.2. Assume B is indecomposable. Then any adjacent elements x < y of B define two quasi-
cycles Γyx and Γxy. For example we consider B3,2 = (B3,2, δ3,2) with B3,2 = {b1 < · · · < b5} and put
x = b2 and y = b3. The practical figures of (5.1.1) in this case are as follows:

Γyx : b1 22x yss b4
ss b5,

Γxy : b1 x 22y b4 b5.
ss

5.2 The final type associated to a quasi-cycle

To a quasi-cycle Γ = Γxy in B, we associate a new final type BΓ = (Γ̃, δ̃). We define Γ̃ to be the totally
ordered set Γ \ {x}, and define δ̃ : Γ̃ → {0, 1} by

δ̃(c) =

{
δ(x) if c = y,

δ(c) otherwise

for any c ∈ Γ̃. Put π̃ = πδ̃.

Lemma 5.3. We have π̃(c) = π(c) for all c ∈ Γ̃ \ {y} and π̃(y) = π(x).

Proof. Let ı be the order preserving bijection from Γ̃ to Γ \ {y}, i.e., ı(c) = c for c 6= y and ı(y) = x. It
is clear that

δ̃(c) = δ(ı(c)) for any b ∈ Γ̃. (5.2.1)

The lemma is equivalent to the commutativity of the following diagram:

Γ̃ π̃−−−−→ Γ̃

ı

y ∥∥∥
Γ \ {y} π−−−−→ Γ \ {x}.

(5.2.2)

Proposition 4.1 says that π̃ is uniquely determined by the condition δ̃(c′) > δ̃(c) ⇔ π̃(c′) > π̃(c) for any
c, c′ ∈ Γ̃ with c′ < c. Similarly π|Γ\{y} is uniquely determined by the condition δ(b′) > δ(b) ⇔ π(b′) > π(b)
for any b, b′ ∈ Γ \ {y} with b′ < b. Hence (5.2.1) shows that the diagram is commutative.

By the lemma above, we see that BΓ is obtained from Γ only by sticking x on y; hence in §6 and §7
we shall express the association Γ 7→ BΓ as

x

Γ

CC y 7→ x y

BΓ

YY

since we will not touch other parts during surgery. Compare Example 5.2 and the following:
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Example 5.4. In the notation in Example 5.2, the figures of BΓyx
and BΓxy

are as follows:

b1 22x
uu y b4

ss b5,

b1 x y 33b4 b5.
ss

From this we have BΓyx ' B2,1 and BΓxy ' B1,1 (cf. Example 4.9). This is closely related to the inequality
(3, 2) ≺ (2, 1) + (1, 1) of the Newton polygons(!), see Lemma 5.6 below.

5.3 Quasi-cycles in minimal final types

Let C = (C, ε) be the minimal final type Bm,n with gcd(m,n) = 1 and m,n > 0. Let us describe the final
types BΓyx and BΓxy for any adjacent elements x < y of C.

Lemma 5.5. Let m,n be positive integers with gcd(m,n) = 1. The following conditions of non-negative
integers m1, n1,m2, n2 with m = m1 + m2 and n = n1 + n2 are equivalent:

(1) m1n2 − n1m2 = 1;

(2) m1n ≡ 1 (mod m) with 0 < m1 ≤ m and n1m ≡ −1 (mod n) with 0 ≤ n1 < n. Note such m1, n1

uniquely exist, and then m2, n2 also exist and are determined by m2 = m − m1 and n2 = n − n1;

(3) we have an inequality (m, n) ≺ (m1, n1) + (m2, n2) of Newton polygons:

•

•

•

iiiiiiiiiiii

qqqqqqqqqq

lllllllllllllllllllll (m1, n1)

(m2, n2)
(m, n)

n1
m1+n1

< n2
m2+n2

such that the area of the triangle is 1/2.

Let m1, n1,m2 and n2 be the non-negative integers satisfying one of the conditions in Lemma 5.5.

Lemma 5.6. For any adjacent elements x < y of C, we have BΓyx ' Bm1,n1 and BΓxy ' Bm2,n2 .

Proof. First note that a final type B′ = (B′, δ′) is minimal of a certain type (m′, n′) if and only if
δ′(b′) ≥ δ′(b′′) for all b′ < b′′.

Since Γyx is an ordered subset of C, we have ε(c) ≥ ε(c′) for any c, c′ ∈ Γyx with c < c′; hence BΓyx is
minimal of a certain type (m′

1, n
′
1). Similarly BΓxy is minimal of a certain type (m′

2, n
′
2). Note m′

1+m′
2 = m

and n′
1 + n′

2 = n. By Lemma 5.5, in order to prove (m′
1, n

′
1) = (m1, n1) and (m′

2, n
′
2) = (m2, n2), it suffices

to show that m′
1n

′
2 − m′

2n
′
1 = 1 or equivalently m′

1n − mn′
1 = 1. Write C = {c1 < · · · < cm+n}. Note

πε(ci) = ci+m if 1 ≤ i ≤ n and πε(ci) = ci−n if n < i ≤ m + n by Lemma 4.14. Let Γyx \ {x} = {cj(1) <
· · · < cj(m′

1+n′
1)
}. We have

πε(cj(i)) =

{
cj(i)+m for 1 ≤ i ≤ n′

1,

cj(i)−n for n′
1 < i ≤ m′

1 + n′
1.

Since π(Γyx \ {x}) = Γyx \ {y} and x < y are adjacent in C, we have m′
1n − mn′

1 = 1.

Let B = (B, δ) be a final type and set π = πδ. Assume that B contains C = Bm,n as a final subtype.
For later use we shall give a sufficient condition for that Γyx contains the first jumping element of C in
B. Write B = (B, δ) with B = {b1 < · · · < bd}. Let bJ(C) be the first jumping element of C in B.

Lemma 5.7. Let x < y be adjacent elements of B with x, y ∈ C. Assume δ(x) = δ(y) and bJ(C)+1 6∈ C.
Then we have bJ(C) ∈ Γyx \ {y}.
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Proof. First note y 6= bJ(C) by δ(x) = δ(y), because for any adjacent elements c′ < c of C we have

δ(c′) 6= δ(c) ⇐⇒ c = bJ(C). (5.3.1)

For any c ∈ C, let v(c) denote the smallest non-negative integer i satisfying πi(c) = bJ(C). We assume
bJ(C) 6∈ Γyx \{y} (i.e., bJ(C) ∈ Γxy \{x}) and derive a contradiction. Let l be the smallest positive integer
satisfying πl(y) = x. Then we have v(y) = l + v(x). Let us prove by induction:

Claim: πj(x) and πj(y) are adjacent in B with πj(x) < πj(y) and δ(πj(x)) = δ(πj(y)) for all
0 ≤ j ≤ v(x).

This is obvious for j = 0. Assume Claim holds for j − 1. Then we have πj(x) < πj(y) by Lemma 4.2
(2) and moreover πj(x) and πj(y) are adjacent by (4.1.2). Since j ≤ v(x) < v(y), we get πj(y) 6= bJ(C)

by the definition of v(y); hence δ(πj(x)) = δ(πj(y)) by (5.3.1). Thus Claim holds for j.
Claim for j = v(x) says that bJ(C) and πv(x)(y) are adjacent in B with bJ(C) < πv(x)(y), namely

πv(x)(y) = bJ(C)+1. This contradicts bJ(C)+1 6∈ C.

6 Surgeries - the unpolarized case

For a final type B = (B, δ), we can construct a new final type by a “small” modification of δ, called a
twist. In some cases, we find some beautiful relation between the old final type and the new one. Then we
call those operations surgeries. By using surgeries, we derive some inductive formulas of ψξ’s (Corollaries
6.4, 6.7, 6.10 and 6.12).

6.1 Twists

Let B = (B, δ) be a final type. Let κ be a permutation of B.

Definition 6.1. The twist by κ of B is the new final type (B, δ ◦ κ).

Put B− = {b ∈ B | δ(b) = 0} and B+ = {b ∈ B | δ(b) = 1}.

Lemma 6.2. Assume that κ−1|B− and κ−1|B+ preserve order. Then we have πδ◦κ = πδ ◦ κ.

Proof. This follows from (4.1.2) and the assumption.

6.2 Cutting - an indecomposable final type

Let B = (B, δ) be an indecomposable final type. Suppose we are given adjacent elements x < y of B such
that

δ(x) 6= δ(y). (6.2.1)

We have two quasi-cycles Γyx and Γxy in B:

B : x

Γxy

CCy.

Γyx

¤¤
(6.2.2)

Let ı be the transposition (x, y). Let B′ = (B, δ′) be the twist by ı of B. By Lemma 6.2, we have
πδ′ = πδ ◦ ı. Set π′ = πδ′ .

Lemma 6.3. We have B′ ' BΓyx ⊕ BΓxy .

15



Proof. Clearly B′ consists of two π′-cycles: one is obtained from Γyx by sticking y to x and the other is
obtained from Γxy by sticking x to y, i.e., the π′-cycles in B′ are written as:

B′ : x

BΓyx

½½
y

BΓxy

¼¼
(6.2.3)

with δ′(x) = δ(y) and δ′(y) = δ(x). Thus we obtain B′ ' BΓyx ⊕ BΓxy .

We consider the case B = (B, δ) = Bm,n. Write B = {b1 < · · · < bm+n}. Then (x, y) := (bn, bn+1)
satisfies (6.2.1) by (4.5.1). Let B′ = (B, δ′) be the twist of B by (x, y) as above. Since δ is of the form
(4.5.1), we have

δ′ = (1, . . . , 1︸ ︷︷ ︸
n−1

, 0, 1, 0, . . . , 0︸ ︷︷ ︸
m−1

). (6.2.4)

Corollary 6.4. Let (m1, n1) and (m2, n2) be as in Lemma 5.5. Then we have

ψ(m1,n1)+(m2,n2) = (0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 1, . . . ,m︸ ︷︷ ︸
m

).

Proof. By Lemma 5.6, we have BΓyx ' Bm1,n1 and BΓxy ' Bm2,n2 . Hence we obtain B′ ' Bm1,n1 ⊕Bm2,n2 .
Then the corollary follows from (6.2.4) and (2.3.1).

Example 6.5. Consider the case (m,n) = (3, 2) and set B = B3,2; then we have (m1, n1) = (2, 1)
and (m2, n2) = (1, 1). Put (x, y) = (b2, b3). Let B′ be the final type twisted by (x, y). Then we have
B′ ' B2,1 ⊕ B1,1. In this case we have ψ(3,2) = (0, 0, 1, 2, 3) and ψ(2,1)+(1,1) = (0, 1, 1, 2, 3) (cf. Example
4.9). The practical figures of (6.2.2) and (6.2.3) in this case are as follows:

B : b1 44x 44yvv
b4

vv
b5,

vv

B′ : b1 22x
uu y 33b4

BΓyx

ss b5.

BΓxy

ss

6.3 Low cutting - a final type with two factors

Let C1 = (C1, ε1) and C2 = (C2, ε2) be two indecomposable final types. Let B = (B, δ) = C1⊕C2. Assume
we are given adjacent elements x < y < z of B such that{

(δ(x), δ(y), δ(z)) = (0, 0, 1),
x, y ∈ C1 and z ∈ C2.

(6.3.1)

Then the π-cycles in B are written as

B : x

Γxy

CC y
Γyx

C1

¤¤
z.

C2

½½

Let κ be the cyclic permutation (z, y, x). Let [2]B = (B, [2]δ, [2]π) be the twist by κ. By Lemma 6.2, we
have

[2]π = π ◦ κ. (6.3.2)

16



Then [2]π-cycles in [2]B are written as

[2]B : x 77y

BΓxy

YY z
vv (6.3.3)

with ([2]δ(x), [2]δ(y), [2]δ(z)) = (1, 0, 0), where the complement of BΓxy
in [2]B is isomorphic to the twist

[1]B1 by (x, z) of B1 = (B1, δ1) defined by

B1 : x

BΓyx

½½
z

C2

½½
(6.3.4)

with (δ1(x), δ1(z)) = (0, 1). Thus

Proposition 6.6. We have [2]B ' [1]B1 ⊕ BΓxy , where B1 = BΓyx ⊕ C2.

Consider the case C1 = Bm(1),n(1) and C2 = Bm(2),n(2) with 0 < n(1)/(m(1) +n(1)) < n(2)/(m(2) +n(2)).
Assume that we are given a triple (x, y, z) satisfying (6.3.1). Let (m1, n1) and (m2, n2) be as in Lemma
5.5 for (m, n) = (m(1), n(1)). Put ξ = (m(1), n(1)) + (m(2), n(2)) and ξ′ = (m1, n1) + (m(2), n(2)), and also
% = (m2, n2).

•

•

•

•
gggggggggggggggggggggggg

ooooooooooooo
hhhhhhhhhhhhhhh

eeeeeeeeee

(m(1), n(1))

(m(2), n(2))
% = (m2, n2)

(m1, n1)

ξ
•

•

•oooooooooooooeeeeeeeeee
(m(2), n(2))(m1, n1)

ξ′

(6.3.5)

By Lemma 5.6, we have BΓyx ' Bm1,n1 and BΓxy ' Bm2,n2 . Hence the final sequence of B1 (resp. BΓxy )
is ψξ′ (resp. ψ%). Let [2]ψξ (resp. [1]ψξ′) denote the final sequence of [2]B (resp. [1]B1). Note [2]ψξ and
[1]ψξ′ depend on the choice of (x, y, z). In this case Proposition 6.6 is expressed as

Corollary 6.7. We have [2]ψξ = [1]ψξ′ ⊕ ψ%.

Example 6.8. Consider the case C1 = B3,1 and C2 = B1,1. In this case we have ξ = (3, 1) + (1, 1) and
ξ′ = (1, 0) + (1, 1) and also % = (2, 1). Note ψξ = (0, 1, 2, 2, 3, 4) and ψξ′ = (1, 1, 2) and ψ% = (0, 1, 2).
Let B = (B, δ) be the direct sum C1 ⊕ C2 and write B = {b1 < . . . < b6}. Set (x, y, z) = (b2, b3, b4). The
π-cycles in B are written as

B : b1

Γxy

33x
zz

y

Γyx

||
z 33b5

C1

vv
b6

C2
ss

with (δ(b1), . . . , δ(b6)) = (1, 0, 0, 1, 0, 0). Thus (x, y, z) satisfies (6.3.1). Hence we have [2]ψξ = [1]ψξ′ ⊕ψ%,
where [2]ψξ = (0, 0, 1, 2, 3, 4) and [1]ψξ′ = (0, 1, 2). Let us draw the practical figures of (6.3.3) and (6.3.4):

[2]B : b1

BΓxy

33x 33yvv
z

[1]B1

vv
b5

vv
b6

vv

and

B1 : x

BΓyx

½½
z 33 b6.

C2
tt
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6.4 High cutting - a final type with two factors

Let C1 = (C1, ε1) and C2 = (C2, ε2) be two indecomposable final types. Let B = (B, δ) = C1⊕C2. Assume
that we are given adjacent elements x < y < z such that{

(δ(x), δ(y), δ(z)) = (0, 1, 1),
x ∈ C1 and y, z ∈ C2.

(6.4.1)

This case can be seen as the “dual” of (6.3.1). The π-cycles in B are written as

B : x

C1

½½
y

Γyz

CCz
Γzy

C2

¤¤

with (δ(x), δ(y), δ(z)) = (0, 1, 1). Let κ is the cyclic permutation (x, y, z). Let [2]B = (B, [2]δ, [2]π) be the
twist by κ. By Lemma 6.2, we have

[2]π = π ◦ κ. (6.4.2)

Then [2]π-cycles in [2]B are written as

[2]B : x

[1]B1

77y

BΓzy

¼¼
z

vv

with ([2]δ(x), [2]δ(y), [2]δ(z)) = (1, 1, 0), where [1]B1 is the twist by (x, z) of B1 = (B1, δ1)

B1 : x

C1

½½
z

BΓyz

½½

with (δ1(x), δ1(z)) = (0, 1). Thus

Proposition 6.9. We have [2]B ' [1]B1 ⊕ BΓzy , where B1 = BΓyz ⊕ C1.

Consider the special case C1 = Bm(1),n(1) and C2 = Bm(2),n(2) with n(1)/(m(1) + n(1)) < n(2)/(m(2) +
n(2)) < 1. Assume that we are given a triple (x, y, z) satisfying (6.4.1). Let (m1, n1) and (m2, n2) be as in
Lemma 5.5 for (m,n) = (m(2), n(2)). Put ξ = (m(1), n(1)) + (m(2), n(2)) and ξ′ = (m(1), n(1)) + (m2, n2),
and also % = (m1, n1).

•
•

•

•

dddddddddddddddddd

oooooooooooooooooooo

lllllllllll

sssssssss

(m(1), n(1))

(m(2), n(2))

% = (m1, n1)

(m2, n2)

ξ •
•

•

dddddddddddddddddd

sssssssss

(m(1), n(1))

(m2, n2)

ξ′ (6.4.3)

By Lemma 5.6, we have BΓzy ' Bm1,n1 and BΓyz ' Bm2,n2 . Hence the final sequence of B1 (resp. BΓzy )
is ψξ′ (resp. ψ%). Let [2]ψξ (resp. [1]ψξ′) denote the final sequence of [2]B (resp. [1]B1), which depends on
the choice of (x, y, z). In this case Proposition 6.9 is expressed as

Corollary 6.10. We have [2]ψξ = [1]ψξ′ ⊕ ψ%.
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6.5 High and low cutting - a final type with two factors

Let C1 = (C1, ε1) and C2 = (C2, ε2) be two indecomposable final types. Let B = (B, δ) = C1⊕C2. Assume
that we are given adjacent elements w < x < y < z such that{

(δ(w), δ(x), δ(y), δ(z)) = (0, 1, 0, 1),
w, y ∈ C1 and x, z ∈ C2.

(6.5.1)

Then the figure of π-cycles in B is as follows:

B : w 77x 66y

C1

vv
z.

C2

vv (6.5.2)

Let κ be the permutation (w, x, z, y) = (w, x)(y, z)(x, y). Let [3]B = (B, [3]δ, [3]π) be the twist by κ. By
Lemma 6.2, we have [3]π = π ◦ κ. Then the [3]π-cycles in [3]B are written as

[3]B : w 55x

BΓzx

½½
y

BΓwy

YY z

[1]B1

uu

with ([3]δ(w), [3]δ(x), [3]δ(y), [3]δ(z)) = (1, 1, 0, 0), where [1]B1 is the twist by (w, z) of B1 = (B1, δ1) defined
by

B1 : w

BΓyw

½½
z

BΓxz

½½

with (δ1(w), δ1(z)) = (0, 1). Thus

Proposition 6.11. We have [3]B ' [1]B1 ⊕ B2, where B2 = BΓwy
⊕ BΓzx

and B1 = BΓyw
⊕ BΓxz

.

Consider the case C1 = Bm(1),n(1) and C2 = Bm(2),n(2) with 0 < n(1)/(m(1) + n(1)) < n(2)/(m(2) +
n(2)) < 1. Assume that we are given a quadruple (w, x, y, z) satisfying (6.5.1). Let (m1, n1), (m2, n2) and
(m′

1, n
′
1), (m

′
2, n

′
2) be as in Lemma 5.5 for (m(1), n(1)) and (m(2), n(2)) respectively. Put ξ = (m(1), n(1)) +

(m(2), n(2)) and ξ′ = (m1, n1) + (m′
2, n

′
2), and also % = (m2, n2) + (m′

1, n
′
1).

•

•

•

•

•

gggggggggggggggggggggggg

ooooooooooooo
hhhhhhhhhhhhhhh

eeeeeeeeee

lllllllrrrrrrr

(m(1), n(1))

(m(2), n(2))
(m2, n2)

(m′
1, n

′
1)

ξ •
•

•rrrrrrreeeeeeeeee
(m′

2, n
′
2)

(m1, n1)
ξ′

(6.5.3)

By Lemma 5.6 we have BΓyw ' Bm1,n1 and BΓwy ' Bm2,n2 and also BΓzx ' Bm′
1,n′

1
and BΓxz ' Bm′

2,n′
2
.

Hence the final sequence of B1 (resp. B2) is ψξ′ (resp. ψ%). Let [3]ψξ (resp. [1]ψξ′) denote the final
sequence of [3]B (resp. [1]B1), which depends on the choice of (w, x, y, z). In this case Proposition 6.11 is
expressed as

Corollary 6.12. We have [3]ψξ = [1]ψξ′ ⊕ ψ%.

7 Surgeries - the polarized case

We need to investigate surgeries of symmetric final types. In this case we have some inductive formulas
of elementary sequences ϕξ (Corollaries 7.5 and 7.8). In §8, by using these inductive formulas, we shall
show ϕζ ⊂ ϕξ for ζ ≺ ξ.
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7.1 Symmetric twists

Let B = (B, δ) be a symmetric final type. Let κ be a permutation of B such that κ(b∨) = κ(b)∨ for all
b ∈ B.

Definition 7.1. The (symmetric) twist of B by κ is the new symmetric final type (B, δ ◦ κ).

By Lemma 6.2, we have

Lemma 7.2. Assume κ−1|B− and κ−1|B+ preserve order. Then we have πδ◦κ = πδ ◦ κ.

7.2 Cutting - a symmetric final type with two asymmetric factors

Let C = (C, ε) be an indecomposable final type. Let B = (B, δ) be the symmetric final type C⊕C∨. Write
B = {b1 < · · · < b2g}.

Assume that we are given adjacent elements x < y < z of B with z ≤ bg such that{
(δ(x), δ(y), δ(z)) = (0, 1, 1),
x ∈ C and y, z ∈ C∨ and x∨ ∈ Γyz.

(7.2.1)

Then the π-cycles in B are written as

B : x 55y

Γyz

33z

Γzy

¤¤
· · · z∨ ??y

∨tt
x∨.

tt (7.2.2)

Let κ be the permutation (x, y, z)(x∨, y∨, z∨). Let B[2] = (B, δ[2], π[2]) be the twist by κ. By Lemma 7.2,
we have π[2] = π ◦ κ. Then the π[2]-cycles in B[2] are written as

B[2] : x 44y

BΓzy

¼¼
z 33· · · z∨

B[1]
1

ss y∨

BΓ∨
zy

WW x∨tt

with (δ[2](x), δ[2](y), δ[2](z)) = (1, 1, 0), where B[1]
1 is the twist by (x, z)(x∨, z∨) of B1 = (B1, δ1) defined

by

B1 : x 33z 33· · · z∨

BΓ∨
yz

ss
x∨

BΓyz

ss

with (δ1(x), δ1(z)) = (0, 1). Thus

Proposition 7.3. We have B[2] ' B[1]
1 ⊕ B2, where B2 = BΓzy ⊕ BΓ∨

zy
and B1 = BΓyz ⊕ BΓ∨

yz
.

Next we shall investigate the case that we are given adjacent elements z∨ < y = bg such that{
(δ(z∨), δ(y)) = (0, 1),
z∨ ∈ C and y ∈ C∨.

(7.2.3)

We call this case the confluent case, because this case can be regarded as obtained by putting “x = z∨

and y = bg” in (7.2.1).
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Then the π-cycles in B are written as

B : z∨

Γ∨
zy

66y

Γyz

66y∨

Γ∨
yz

vv
z.

Γzy

vv (7.2.4)

Let κ be the permutation (z∨, y, z, y∨) = (z∨, y)(z, y∨)(y, y∨). Let B[2] = (B, δ[2], π[2]) be the twist by κ.
By Lemma 7.2, we have π[2] = π ◦ κ. In the same way as in §6.5, we obtain

Proposition 7.4. B[2] ' B[1]
1 ⊕ B2, where B2 = BΓzy ⊕ BΓ∨

zy
and B[1]

1 is the twist by (z∨, z) of B1 =
BΓyz ⊕ BΓ∨

yz
.

Consider the case C = Bm,n with m > n > 0. Let B = C ⊕ C∨. Let (m1, n1) and (m2, n2) be as in
Lemma 5.5. Assume that we are given a triple (x, y, z) satisfying (7.2.1) or a pair (z∨, y = bg) satisfying
(7.2.3). Set ξ = (m,n) + (n,m) and ξ′ = (m1, n1) + (n1, m1) and also % = (m2, n2) + (n2, m2).

•
•

•

•

•

gggggggggggg

wwwwwwwwwwwwwwwjjjjjjjj

ccccc

{{{{{{{

ttttttttt

(m, n)

(n, m)
%

%

ξ • •

•{{{{{{{ccccc
(m1, n1)

(n1, m1)
ξ′

(7.2.5)

By Lemma 5.6, we have BΓ∨
zy

⊕ BΓzy ' Bm2,n2 ⊕ Bn2,m2 and BΓ∨
yz

⊕ BΓyz ' Bm1,n1 ⊕ Bn1,m1 . Hence the

final sequence of B1 (resp. B2) is ϕξ′ (resp. ϕ%). Let ϕ
[2]
ξ (resp. ϕ

[1]
ξ′ ) denote the elementary sequence of

B[2] (resp. B[1]
1 ). Then in this case, Proposition 7.3 and Proposition 7.4 are expressed as

Corollary 7.5. We have ϕ
[2]
ξ = ϕ

[1]
ξ′ ⊕ ϕ%.

We give an example in the confluent case.

Example 7.6. Consider the case C = B3,1. Let ξ = (3, 1)+(1, 3). In this case we have ξ′ = (1, 0)+(0, 1)
and % = (2, 1) + (1, 2). Set B = C ⊕ C∨. Write B = (B, δ) with B = {b1 < · · · < b8}. The elementary
sequence of B is ϕξ = (0, 1, 2, 2) and we have δ = (1, 0, 0, 1, 0, 1, 1, 0). Put (z∨, y) := (b3, b4). Note that
the π-cycles in B are written as

b1 33b2

yy
z∨

yy
y 66y∨vv

z 99 b7 88 b8.
ss

Hence (z∨, y) satisfies (7.2.3). Then B[2] is given by

b1

BΓ∨
zy

33b2

yy
z∨ 44y 44y∨tt z

B[1]
1

tt
b7 88 b8.

BΓzy

ss

Confirm B1 ' B1,0⊕B0,1 (with B[1]
1 ' B1,1) and BΓ∨

zy
⊕BΓzy ' B2,1⊕B1,2. Thus we have ϕ

[2]
ξ = ϕ

[1]
ξ′ ⊕ϕ%,

where ϕ
[2]
ξ = (0, 1, 1, 1) and ϕ

[1]
ξ′ = (0) and ϕ% = (0, 1, 1).

7.3 Reducing - a symmetric final type with certain three factors

Let C be an indecomposable final type. We consider the case B = (B, δ) = C ⊕ B1,1 ⊕ C∨. Write
B = {b1 < · · · < b2g}. Assume that we are given adjacent elements x < y < z with z ≤ bg such that{

(δ(x), δ(y), δ(z)) = (0, 1, 1),
x ∈ C and y ∈ B1,1 and z ∈ C∨ (7.3.1)
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or (confluent variant): adjacent elements z∨ < y = bg such that{
(δ(z∨), δ(y)) = (0, 1)
z∨ ∈ C and y ∈ B1,1; we put x = z∨.

(7.3.2)

Since π(y∨) = y and δ(y∨) = 0 = δ(z∨), we have π(z∨) = x by (4.1.2); similarly we also have
π(z) = x∨. Hence the figure of the π-cycles in B in the case (7.3.1) is as follows

x 77y

π

22z
π

22· · · z∨
π

rr y∨
π

rr x∨.
vv

As in §7.2, let κ be the permutation (x, y, z)(x∨, y∨, z∨) for (7.3.1) and (z∨, y, z, y∨) for (7.3.2). Let
B[2] = (B[2], δ[2]) be the symmetric twist by κ. Set π[2] = πδ[2] . Then π[2] = π ◦ κ. Let B1 = C ⊕ C∨ be
the symmetric final subtype of B; then x < z is adjacent in B1; let B[1]

1 = (B[1]
1 , δ

[1]
1 ) be the symmetric

twist by (x, z)(x∨, z∨).

Proposition 7.7. We have B[2] ' B[1]
1 ⊕ B1,1.

Proof. Since π[2](y∨) = π(z∨) = x and π[2](x) = π(y) = y∨, we have the π[2]-cycle in B[2]:

y∨ π[2]

−−−−→ x
π[2]

−−−−→ y∨.

This cycle gives a factor in B[2], which is isomorphic to B1,1. The remaining factor is B′ = (B′, δ′) defined
by B′ = (B1 \ x) ∪ {y} and δ′ = δ[2]|B′ . Since δ′(y) = 1 = δ

[1]
1 (x), the map B′ to B[1]

1 sending y to x and
b to b for all b ∈ B′ \ {y} is an isomorphism as final types.

Consider the special case C = Bm,n. Let ξ = (m,n) + (1, 1) + (n,m) and ξ′ = (m,n) + (n,m).

•
•

•

•

gggggggg

oooo

wwwwwwwww
(m, n)

(n, m)

ξ

(1, 1)

•
•

•

gggggggg

wwwwwwwww(m, n)

(n, m)

ξ′ (7.3.3)

Assume that we are given a triple (x, y, z) satisfying (7.3.1) or (z∨, y = bg) satisfying (7.3.2). Let ϕ
[2]
ξ

(resp. ϕ
[1]
ξ′ ) be the elementary sequence of B[2] (resp. B[1]

1 ). In this case Proposition 7.7 is expressed as

Corollary 7.8. We have ϕ
[2]
ξ = ϕ

[1]
ξ′ ⊕ ϕ(1,1).

Example 7.9. (1) Let ζ = 4(1, 1) and ξ = (2, 1)+(1, 1)+(1, 2). Note ξ′ = (2, 1)+(1, 2) and % = (1, 1).
We have ϕξ = (0, 1, 1, 1) and ϕξ′ = (0, 1, 1). Note (x, y, z) = (b2, b3, b4) satisfies (7.3.1). Then one
can check ϕ

[2]
ξ = ϕ

[1]
ξ′ ⊕ ϕ(1,1), i.e., (0, 0, 0, 1) = (0, 0, 1) ⊕ (0).

(2) Let ζ = 2(1, 1) and ξ = (1, 0) + (1, 1) + (0, 1). Note ξ′ = (1, 0) + (0, 1). We have ϕξ = (1, 1)
and ϕξ′ = (1). Note (z∨, y) = (b1, b2) satisfies (7.3.2). One can check ϕ

[2]
ξ = ϕ

[1]
ξ′ ⊕ ϕ(1,1), i.e.,

(0, 0) = (0) + (0).

8 Proof of the main theorem

Now we prove Theorem 3.1. In §8.1 we reduce our problem to three simple cases, and in §8.2 - §8.4 we
give a proof in each case. The proof is done by showing some inductive formulas of ϕξ’s (Corollaries 8.6
and 8.10 and Propositions 8.20 - 8.23). For this we shall prove that the results in §6 and §7 are actually
applicable (Lemmas 8.5, 8.9 and 8.18).
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8.1 Reduction to the three cases

Let ζ and ξ be symmetric Newton polygons with ζ ≺ ξ. The proof of Theorem 3.1 is by induction on the
number c(ξ; ζ) and the height of ξ. It suffices to show the case that

(S) (1) there is no symmetric Newton polygon η such that ζ � η � ξ;

(2) ζ ∩ ξ consists of finitely many points.

Indeed if there is a symmetric Newton polygon η such that ζ � η � ξ, then by the induction hypothesis
there exist two series of elementary sequences

ϕζ = ϕ1,0 < · · · < ϕ1,c(η;ζ) = ϕη and ϕη = ϕ2,0 < · · · < ϕ2,c(ξ;η) = ϕξ.

By c(ξ; ζ) = c(ξ; η) + c(η; ζ), we get a required series ϕ1,0 < · · · < ϕ1,c(η;ζ) < ϕ2,1 < · · · < ϕ2,c(ξ;η). If
ζ ∩ ξ contains a segment, then there is a symmetric Newton polygon % such that ζ = ζ ′ +% and ξ = ξ′ +%
with ζ ′ ≺ ξ′ and c(ξ; ζ) = c(ξ′; ζ ′). By the induction hypothesis, there is a series of elementary sequences
ϕζ′ = ϕ′

0 < · · · < ϕ′
c(ξ′;ζ′) = ϕξ′ . We set ϕi = ϕ′

i ⊕ ϕ% for 1 ≤ i ≤ c(ξ; ζ) = c(ξ′; ζ ′). Then we have a
required series ϕζ = ϕ0 < · · · < ϕc(ξ;ζ) = ϕξ.

From now on we assume that ζ ≺ ξ satisfies (S). Let 2g be the height of ξ.

Lemma 8.1. One of the following three disjoint cases (A), (A′) and (B) occurs.

(A) ξ(g) = ζ(g) − 1/2 ∈ Z and the lower middle slope of ξ (the last slope over [0, g)) is less than 1/2.

(A′) ζ(g) = ξ(g) + 1/2 ∈ Z.

(B) ξ(g) = ζ(g) ∈ Z.

Proof. First note for any symmetric Newton polygon ϑ of height 2g, we have 2ϑ(g) ∈ Z. If there is an
integer i with ξ(g) < i < ζ(g), then let η be the convex hull of ζ and the point (g, i); then we have
ζ � η � ξ, which contradicts the assumption. Hence we have ζ(g) − ξ(g) = 0, 1/2 or ζ(g) − ξ(g) = 1
with ξ(g), ζ(g) ∈ Z. If ζ(g) − ξ(g) = 1 with ξ(g), ζ(g) ∈ Z, then we have the convex hull η of the points
(g − 1, ξ(g)), (g + 1, ζ(g)) and ζ, and the contradiction ζ � η � ξ. The case ζ(g) − ξ(g) = 0 is (B). Now
suppose ζ(g)− ξ(g) = 1/2. If the lower middle slope of ξ is less than 1/2, then ξ(g) must be in Z and this
is the case (A). Otherwise we can assume that ξ does not have a breaking point at g and the slope of ξ
is equal to 1/2. If ξ(g) were in Z, then the convex hull η of ζ and the point (g, ξ(g)) satisfies ζ � η � ξ,
which is a contradiction. Hence this case is (A′).

8.2 Proof in the case (A)

Assume ζ ≺ ξ is of type (A). First let us describe ζ ≺ ξ concretely.

Lemma 8.2. We can write, for some t ∈ Z≥0,{
ζ = ζ0 + ζ1 + · · · + ζt,

ξ = (m,n) + (n,m)

with ζ0 = (m0, n0) := (1, 1) and ζi = (mi, ni) + (ni,mi), where (m,n) and (mi, ni) (1 ≤ i ≤ t) are
segments such that

(1) λi = ni/(mi + ni) satisfy
n

m + n
< λt ≤ · · · ≤ λ1 ≤ λ0 = 1/2;

(2) m = 1 +
∑t

i=1 mi and n =
∑t

i=1 ni.

Note g = m + n. In this case we have c(ξ; ζ) = t + 1.
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Proof. We show that ξ has to be of the form above. Then ζ is automatically determined by the condition
(S), and it is straightforward to calculate the value of c(ξ; ζ) (cf. [17], (5.3)). The condition ξ(g) ∈ Z
means that Q = (g, ξ(g)) is a breaking point of ξ. If ξ had another breaking point, then the convex hull
η of ζ and the breaking points of ξ other than Q satisfies ζ � η � ξ. This contradicts the assumption
that ζ ≺ ξ satisfies (S). Hence ξ = (m, n) + (n, m) for some non-negative integers m and n with
gcd(m,n) = 1.

Set
ζ ′ :=

∑t−1
i=0 ζi,

ξ′ := (m − mt, n − nt) + (n − nt,m − mt),
% := ζt.

See the figure (7.2.5). Then ζ ′ ≺ ξ′ is lower dimensional of type (A). Write ξ′ = (m1, n1) + (n1, m1) and
% = (m2, n2) + (n2, m2). Note m1n2 − n1m2 = 1.

For a non-superspecial elementary sequence ϕ, i.e., ϕ 6= (0, . . . , 0), we define an elementary sequence
ϕ〈1〉 as follows: let ψ be the final sequence stretched from ϕ and put

r(ϕ) = max{j ∈ {1, . . . , g} | ψ(j − 1) < ψ(j) = ψ(j + 1)}; (8.2.1)

then we set

ϕ〈1〉(i) =

{
ϕ(i) − 1 if i = r(ϕ),
ϕ(i) otherwise

for i = 0, . . . , g and also define ϕ〈k〉 as satisfying ϕ〈k〉 = (ϕ〈k−1〉)〈1〉 for 2 ≤ k ≤ |ϕ|.
Let C = Bm,n and set B = C ⊕ C∨. Write B = (B, δ) and C = (C, ε) with C ⊂ B. We set π = πδ and

write B = {b1 < · · · < b2g}. Then by Corollary 4.22 (1), we have

C = {b1, . . . , bm, bg+1, . . . , bg+n} (8.2.2)

and by (4.5.3) we have
ϕξ = (0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . ,m − n︸ ︷︷ ︸
m−n

,m − n, . . . ,m − n︸ ︷︷ ︸
n

). (8.2.3)

Lemma 8.3. We have t = 0 if and only if (m,n) = (1, 0).

Proof. Obvious by Lemma 8.2 (2).

Lemma 8.4. If t = 0, then we have ϕζ = (0) and ϕξ = (1). In particular we have ϕ
〈1〉
ξ = ϕζ .

Proof. If t = 0, then ζ = ζ0 = (1, 1); hence ϕζ = (0). We have ϕξ = (1) by Lemma 8.3 and (8.2.3).

Assume t ≥ 1. Then we have n ≥ 1 by Lemma 8.3, since n = 0 implies m = 1 by gcd(m,n) = 1.
Hence we have m + 1 = g − n + 1 ≤ g. We put{

(x, y, z) = (bm, bm+1, bm+2) if m + 1 < g,

(z∨, y) = (bm, bm+1) if m + 1 = g.

Lemma 8.5. (1) If m + 1 < g, then (x, y, z) satisfies (7.2.1).

(2) If m + 1 = g, then (z∨, y) satisfies (7.2.3).

Proof. (1) Clearly (x, y, z) = (bm, bm+1, bm+2) satisfies (δ(x), δ(y), δ(z)) = (0, 1, 1) by (2.3.1) and (8.2.3).
Also we have x ∈ C and y, z ∈ C∨ by (8.2.2). By (2.3.4) we have π(y) = bg+(m+1)−(m−n) = b2g+1−m = x∨;
hence we obtain x∨ ∈ Γyz. (2) Note (z∨, y) = (bm, bm+1) = (bg−1, bg). By (2.3.1) and (8.2.3), we have
(δ(z∨), δ(y)) = (0, 1). It follows from (8.2.2) that z∨ ∈ C and y ∈ C∨.
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Corollary 8.6. We have ϕ
〈2〉
ξ = ϕ

〈1〉
ξ′ ⊕ ϕ%.

Proof. Let ϕ
[2]
ξ and ϕ

[1]
ξ be as in §7.2 for the triple (x, y, z) or the pair (z∨, y) defined above. Then we

have ϕ
[2]
ξ = ϕ

〈2〉
ξ and ϕ

[1]
ξ′ = ϕ

〈1〉
ξ′ , since we have r(ϕξ) = m and r(ϕ〈1〉

ξ ) = m + 1. Hence the corollary is
nothing but Corollary 7.5.

Corollary 8.7. There exists a series of elementary sequences ϕ0 < · · · < ϕc(ξ;ζ) such that ϕ0 = ϕζ ,
ϕc(ξ;ζ)−1 = ϕ

〈1〉
ξ and ϕc(ξ;ζ) = ϕξ. If t ≥ 1, we can choose such a series satisfying ϕc(ξ;ζ)−2 = ϕ

〈2〉
ξ in

addition.

Proof. For t = 0 this is nothing but Lemma 8.4. Assume t ≥ 1. Put c = c(ξ; ζ) and c′ = c(ξ′; ζ ′). Note
c′ = c − 1. By the induction hypothesis, there are elementary sequences ϕ′

0 < · · · < ϕ′
c′−1 such that

ϕ′
0 = ϕζ′ and ϕ′

c′−1 = ϕ
〈1〉
ξ′ . We put ϕi = ϕ′

i ⊕ ϕ% for i = 0, . . . , c − 2 and set ϕc−1 = ϕ
〈1〉
ξ and ϕc = ϕξ.

Note ϕ0 = ϕζ′ ⊕ ϕ% = ϕζ . It remains to show ϕi < ϕi+1 for all 0 ≤ i < c. This means
ϕ′

i ⊕ ϕ% < ϕ′
i+1 ⊕ ϕ% for 0 ≤ i ≤ c − 2,

ϕ
〈1〉
ξ′ ⊕ ϕ% < ϕ

〈1〉
ξ for i = c − 1,

ϕ
〈1〉
ξ < ϕξ for i = c.

The first and the third inequalities are obvious. The second inequality follows from Corollary 8.6.

8.3 Proof in the case (A′)

In this subsection we shall reduce the case (A′) to the case (A). Let ζ ≺ ξ be of type (A′). The exact
form of ζ ≺ ξ is as follows.

Lemma 8.8. We can write, for some t ∈ Z≥0,{
ζ = ζ0 + ζ1 + · · · + ζt,

ξ = (m,n) + (1, 1) + (n,m)

with ζ0 = (m0, n0) + (n0,m0) := (1, 1) + (1, 1) and ζi = (mi, ni) + (ni,mi), where (m,n) and (mi, ni)
(1 ≤ i ≤ t) are segments such that

(1) λi = ni/(mi + ni) satisfy
n

m + n
< λt ≤ · · · ≤ λ1 ≤ λ0 = 1/2;

(2) m = 1 +
∑t

i=1 mi and n =
∑t

i=1 ni.

Note g = m + n + 1. In this case we have c(ξ; ζ) = t + 2.

Proof. It suffices to show that ξ has to be of the form above. Then ζ has to be of the above form by the
condition (S), and it is straightforward to compute the value of c(ξ; ζ) (cf.[20], (5.3)). Since ξ(g) is not
an integer, ξ contains a supersingular factor (1, 1). Thus ξ has the breaking points P = (g − 1, ξ(g − 1))
and P∨ = (g +1, ξ(g +1)). If ξ had another breaking point, then the convex hull η of ζ and the breaking
points other than P, P∨ satisfies ζ � η � ξ. This is a contradiction. Hence ξ = (m,n) + (1, 1) + (n, m)
for some non-negative integers m and n with gcd(m,n) = 1.

We define Newton polygons ξ′ and ζ ′ by ξ = ξ′ + % and ζ = ζ ′ + % with % = (1, 1). See the figure
(7.3.3). Then ζ ′ ≺ ξ′ is of type (A) with c(ξ′, ζ ′) = t + 1.

Set C = Bm,n and B = C ⊕ B1,1 ⊕ C∨. Then B is the symmetric final type of ϕξ. Write B = (B, δ)
with B = {b1 < · · · < b2g}. Note m + 1 = g − n ≤ g. Put{

(x, y, z) = (bm, bm+1, bm+2) if m + 1 < g,

(z∨, y) = (bm, bm+1) if m + 1 = g.
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Lemma 8.9. (1) If m + 1 < g, then (x, y, z) satisfies (7.3.1).

(2) If m + 1 = g, then (z∨, y) satisfies (7.3.2).

Proof. Write C = (C, ε) and B1,1 = (B2, δ2). By Corollary 4.22 (1), we have C = {b1, . . . , bm, bg+1, . . . , bg+n}
and B2 = {bm+1, bg+n+1} and C∨ = {bm+2, . . . , bg, bg+n+2, . . . , b2g}. Also by (4.5.3) we have

ϕξ = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . ,m − n,m − n, . . . ,m − n︸ ︷︷ ︸
n+1

).

Hence if m + 1 < g, then we have (δ(x), δ(y), δ(z)) = (0, 1, 1) by (2.3.1), and x ∈ C, y ∈ B2 and z ∈ C∨.
If m + 1 = g, then we have (δ(z∨), δ(y)) = (0, 1) and also z∨ ∈ C and y ∈ B2.

Corollary 8.10. We have ϕ
〈2〉
ξ = ϕ

〈1〉
ξ′ ⊕ ϕ%.

Proof. Let ϕ
[2]
ξ and ϕ

[1]
ξ be as in §7.3 for the triple (x, y, z) or the pair (z∨, y) defined above. Then we

have ϕ
〈2〉
ξ = ϕ

[2]
ξ and ϕ

〈1〉
ξ′ = ϕ

[1]
ξ′ , since r(ϕξ) = m and r(ϕ〈1〉

ξ ) = m + 1. Hence the corollary is nothing
but Corollary 7.8.

See Example 7.9 for some examples. By the same argument as in Corollary 8.7, we obtain

Corollary 8.11. There exist elementary sequences ϕ0 < · · · < ϕc(ξ;ζ) such that ϕ0 = ϕζ , ϕc(ξ;ζ)−2 = ϕ
〈2〉
ξ ,

ϕc(ξ;ζ)−1 = ϕ
〈1〉
ξ and ϕc(ξ;ζ) = ϕξ.

8.4 Proof in the case (B)

Assume ζ ≺ ξ is of type (B). We have the following description of ζ ≺ ξ.

Lemma 8.12. We can write, for some r, s ∈ Z≥0,ζ =
s∑

i=−r

ζi,

ξ = (m(1), n(1)) + (m(2), n(2)) + (n(2),m(2)) + (n(1),m(1))

with ζi = (mi, ni) + (ni,mi), where (m(i), n(i)) (i = 1, 2) and (mi, ni) (−r ≤ i ≤ s) are segments such
that

(1) λ(i) = n(i)/(m(i) + n(i)) (i = 1, 2) and λi = ni/(mi + ni) (−r ≤ i ≤ s) satisfy

λ(1) < λ−r ≤ · · · ≤ λ−1 ≤ λ0 ≤ λ1 ≤ · · · ≤ λs < λ(2);

(2) we have m =
∑s

i=−r mi and n =
∑s

i=−r ni, where m = m(1) + m(2) and n = n(1) + n(2);

(3) the first breaking point (m(1) + n(1), n(1)) of ξ is under ζ0. (This condition determines r and s.)

Note g = m + n. In this case we have c(ξ; ζ) = r + s + 1.

Proof. It suffices to show that ξ has to be of the form above. Then the form of ζ is determined by the
conditions (S) and ξ(g) = ζ(g), and it is straightforward to compute the value of c(ξ; ζ) (cf. [20], (5.3)).
The condition ξ(g) ∈ Z means that Q = (g, ξ(g)) is a breaking point of ξ. If there were no other true
breaking point, then ζ = ξ follows from the condition ζ(g) = ξ(g). This is a contradiction. Let P and P∨

be the first and the last true breaking points of ξ respectively. Note P 6= Q 6= P∨. If ξ had a breaking
point other than P,Q, P∨, then the convex hull η of ζ and the breaking points of ξ other than P, P∨

satisfies ζ � η � ξ. This is a contradiction. Thus ξ has to be as in the lemma.
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Put C1 = (C1, ε1) := Bm(1),n(1) and C2 = (C2, ε2) := Bm(2),n(2) . We define B = C1⊕C2 and B = B⊕B∨.
Write B = (B, δ) with B = {b1 < · · · < b2g}. Note B is the symmetric final type of ϕξ. Recall
m = m(1) + m(2), n = n(1) + n(2) and g = m + n (Lemma 8.12).

We claim n = n(1) + n(2) ≥ 1 and m(i) ≥ 1 for i = 1, 2. Indeed if n = n(1) + n(2) = 0, we have
n(i) = 0; then all slopes of ξ are 0 or 1; this contradicts λ(1) < λ(2) (Lemma 8.12 (1)). Since m(i) ≥ n(i)

and gcd(m(i), n(i)) = 1, we have m(i) ≥ 1. Note m = m(1) + m(2) ≥ 2.

Lemma 8.13. Let J be the first jumping number of ϕξ (Definition 4.10). Then ϕξ is of either of the
following types:

(I`) ϕξ is of the form (0, . . . , 0, 1, 2, . . . , `︸ ︷︷ ︸
`

, `, ∗, . . . , ∗) for some ` with 2 ≤ ` ≤ g − J ,

(II`) ϕξ is of the form (0, . . . , 0, 1, 1, . . . , `︸ ︷︷ ︸
`

, `, ∗, . . . , ∗) for some ` with 1 ≤ ` ≤ g − J − 1.

In particular we have |ϕξ| ≥ 3.

Proof. By Corollary 4.22 (2) we have J ≤ n. Thus we have g − J ≥ m ≥ 2. If ϕ(J + 1) = 2, then ϕ is of
type (I). Otherwise ϕ is of type (II).

For a non-superspecial elementary sequence ϕ, we define an elementary sequence 〈1〉ϕ as follows: let
ψ be the final sequence stretched from ϕ and let

l(ϕ) = min{j ∈ {1, . . . , g} | 0 6= ψ(j) = ψ(j + 1)}; (8.4.1)

then we set
〈1〉ϕ(i) =

{
ϕ(i) − 1 if i = l(ϕ),
ϕ(i) otherwise

for i = 0, . . . , g and define 〈k〉ϕ as satisfying 〈k〉ϕ = 〈1〉(〈k−1〉ϕ) for 2 ≤ k ≤ |ϕ|.
In this subsection we show a little stronger assertion than Theorem 3.1:

Proposition 8.14. There exists a series of elementary sequences ϕ0 < · · · < ϕc(ξ;ζ) such that ϕ0 = ϕζ ,
ϕc(ξ;ζ)−1 = 〈1〉ϕξ and ϕc(ξ;ζ) = ϕξ. If (r, s) 6= (0, 0) we can choose such a series satisfying ϕc(ξ;ζ)−2 =
〈2〉ϕξ in addition. (Here (r, s) is as in Lemma 8.12.)

The proof is by induction on height of ξ. Now we assume Proposition 8.14 holds for Newton polygons
with lower height.

Firstly we consider the case of r = s = 0. In this case ζ = (m,n) + (n,m); hence by (4.5.3) we have

ϕζ = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . ,m − n,m − n, . . . ,m − n︸ ︷︷ ︸
n

).

Also ξ is written as
ξ = (m1, n1) + (m2, n2) + (n2, m2) + (n1, m1) (8.4.2)

with m1 + m2 = m, n1 + n2 = n and m1n2 − m2n1 = 1.

Lemma 8.15. Let ξ be as in (8.4.2). Then we have

ϕξ = (0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 1, . . . ,m − n︸ ︷︷ ︸
m−n

,m − n, . . . ,m − n︸ ︷︷ ︸
n

). (8.4.3)

In particular if r = s = 0, then we have 〈1〉ϕξ = ϕζ .

Proof. This follows from Corollaries 6.4 and 4.22 (2).
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From now on we assume (r, s) 6= (0, 0). Let J be the first jumping number of ϕξ and ` as in Lemma
8.13. We put

v =

{
J + ` for (I),
J + ` + 1 for (II)

(8.4.4)

and set {
(x, y, z) = (bv−2, bv−1, bv) for (I) and (II 6̀=2),
(w, x, y, z) = (bv−3, bv−2, bv−1, bv) for (II2).

(8.4.5)

Note v ≤ g (see Lemma 8.13), i.e., we have z ≤ bg. By (2.3.1) we have

(δ(x), δ(y), δ(z)) =

{
(0, 0, 1) for (I) and (II`≥3),
(0, 1, 1) for (II1),

(8.4.6)

(δ(w), δ(x), δ(y), δ(z)) = (0, 1, 0, 1) for (II2). (8.4.7)

Lemma 8.16. We have z ≤ bm. (Therefore w, x, y, z ∈ B by Corollary 4.22 (1)).

Proof. Assume z ∈ {bm+1, . . . , bg} and derive a contradiction. By the definition (8.4.5) of z and Corollary
4.22 (2), we have ` = m − n. Then by Corollary 4.22, the following has to hold:

ϕξ =


(0, . . . , 0︸ ︷︷ ︸

n

, 1, . . . ,m − n,m − n, . . . ,m − n︸ ︷︷ ︸
n

) for (I),

(0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 1, . . . ,m − n︸ ︷︷ ︸
m−n

,m − n, . . . ,m − n︸ ︷︷ ︸
n

) for (II).

Hence we have ϕξ = ϕ(m,n)+(n,m) for (I); this is a contradiction. For (II), by (8.4.3) we have ϕξ =
ϕ(m1,n1)+(m2,n2)+(n2,m2)+(n1,m1), which contradicts (r, s) 6= (0, 0).

Lemma 8.17. (1) For the types (I) and (II`≥3), we have x, y ∈ C1 and z ∈ C2.

(2) For the type (II1), we have x ∈ C1 and y, z ∈ C2.

(3) For the type (II2), we have w, y ∈ C1 and x, z ∈ C2.

(4) For the type (II`≥3) we have bJ+1 ∈ C2.

Proof. By Corollary 4.18, we have bJ ∈ C1 for all cases. Since δ(bJ) = 0, we have δ(c) = 0 for all c ∈ C1

with c > bJ . Thus for all J < i ≤ m with δ(bi) = 1, we have bi ∈ C2. Hence z ∈ C2 holds; also for
the type (II1) we have y ∈ C2; and for the type (II2) we have x ∈ C2; and for the type (II`≥3) we have
bJ+1 ∈ C2.

Since z ∈ C2 and δ(z) = 1, we have c ∈ C1 for all c < z with δ(c) = 0. Hence we have y ∈ C1 for the
types (I), (II2) and (II`≥3).

By (8.4.6), (8.4.7) and Lemma 8.17 (1) - (3), we obtain

Lemma 8.18. (1) For the types (I) and (II`≥3), (x, y, z) satisfies (6.3.1) for B = C1 ⊕ C2.

(2) For the type (II1), (x, y, z) satisfies (6.4.1) for B = C1 ⊕ C2.

(3) For the type (II2), (w, x, y, z) satisfies (6.5.1) for B = C1 ⊕ C2.

Thus the results in §6 are applicable. In the case (B) we need an extra step to show that the surgeries
actually produce ϕζ from ϕξ. More precisely we have to show r ≥ 1 for (I) and (II`≤2), and s ≥ 1
for (II`≥2), i.e., the first breaking point of ζ is above the first segment of ξ for (I) and (II`≤2), and the
lower middle breaking point of ζ (=the last breaking point over [0, g)) is above the second segment of
ξ for (II`≥2). This will be proved with a help from geometry: Grothendieck-Katz ([9], Theorem 2.3.1).
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From now on we shall use a line graph which may not be lower convex: for segments %i = (mi, ni)
(i = 1, . . . , t), putting Pj := (

∑j
i=1(mi + ni),

∑j
i=1 ni) for 0 ≤ j ≤ t, let L = %1

−→+ · · · −→+%t denote the
line graph passing through P0, . . . , Pt in this order. We call L symmetric if λ(%i) + λ(%t+1−i) = 1 for all
i = 1, . . . , t. Obviously we have

Lemma 8.19. Let L = %1
−→+ · · · −→+%t and ζ the Newton polygon %1 + · · · + %t. Then we have L ≺ ζ, and

moreover if L 6= ζ, then there exists a breaking point P of ζ which is below L, i.e., L � P .

Proposition 8.20. For the type (I) we have r ≥ 1. Put

ζ ′ :=
∑s

i=−r+1 ζi,

ξ′ := (m(1) − m−r, n
(1) − n−r) + (m(2), n(2)) + (n(2),m(2)) + (n(1) − n−r,m

(1) − m−r),
% := (m−r, n−r) + (n−r,m−r).

(See the figure (6.3.5). Note ζ ′ ≺ ξ′ is of type (B).) Then we have 〈2〉ϕξ = 〈1〉ϕξ′ ⊕ ϕ%.

Proof. We define m1, n1, m2 and n2 by m1 + m2 = m(1), n1 + n2 = n(1) and m1n2 − n1m2 = 1. We put

%′ = (m2, n2) + (n2,m2),
ξ′′ = (m1, n1) + (m(2), n(2)) + (n(2),m(2)) + (n1, m1).

There exists a unique symmetric Newton polygon ζ ′′ with ζ ′′ ≺ ξ′′ satisfying (S) and (m1 + n1, n1) 6∈ ζ ′′.
Clearly ζ ′′ ≺ ξ′′ is of type (B). Let L be the symmetric line graph

(m2, n2)
−→+ ζ ′′

−→+ (n2,m2). (8.4.8)

Note there is no lattice point Q with L � Q � ξ by the construction.
By Lemma 8.18 (1) and Corollary 6.7, we obtain

〈2〉ϕξ = 〈1〉ϕξ′′ ⊕ ϕ%′ , (8.4.9)

since we have l(ϕξ) = J + ` − 1 and l(〈1〉ϕξ) = J + ` − 2.
In order to show r ≥ 1, ζ ′′ = ζ ′, ξ′′ = ξ′ and %′ = %, it suffices to check L = %′ + ζ ′′. By the induction

hypothesis, we have ϕζ′′ ≤ 〈1〉ϕξ′′ ; hence by (8.4.9) we have

ϕζ′′ ⊕ ϕ%′ ≤ 〈1〉ϕξ′′ ⊕ ϕ%′ = 〈2〉ϕξ < ϕξ;

thus we get %′ + ζ ′′ � ξ by Grothendieck-Katz ([9], Theorem 2.3.1). If L 6= %′ + ζ ′′, then by Lemma 8.19
there exists a breaking point P of %′ + ζ ′′ such that L � P � ξ. This is a contradiction.

Proposition 8.21. For the type (II1) we have s ≥ 1. Put

ζ ′ :=
∑s−1

i=−r ζi,

ξ′ := (m(1), n(1)) + (m(2) − ms, n
(2) − ns) + (n(2) − ns,m

(2) − ms) + (n(1),m(1)),
% := (ms, ns) + (ns,ms).

(See the figure (6.4.3). Note ζ ′ ≺ ξ′ is of type (B).) Then we have 〈2〉ϕξ = 〈1〉ϕξ′ ⊕ ϕ%.

Proof. We define m1, n1, m2 and n2 by m1 + m2 = m(2), n1 + n2 = n(2) and m1n2 − n1m2 = 1. Put

%′ = (m1, n1) + (n1,m1),
ξ′′ = (m(1), n(1)) + (m2, n2) + (n2, m2) + (n(1),m(1)).

There exists a unique symmetric Newton polygon ζ ′′ such that ζ ′′ ≺ ξ′′ satisfies (S) and (m(1) +
n(1), n(1)) 6∈ ζ ′′. Clearly ζ ′′ ≺ ξ′′ is of type (B). We write ζ ′′ = ζ ′′−

−→+ ζ ′′+ with ht(ζ ′′−) = ht(ζ ′′+) and
set

L = ζ ′′−
−→+ %′

−→+ ζ ′′+.
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Note by the construction there is no lattice point Q with L � Q � ξ.
By Lemma 8.18 (2) and Corollary 6.10, we have

〈2〉ϕξ = 〈1〉ϕξ′′ ⊕ ϕ%′ , (8.4.10)

since we have l(ϕξ) = J and l(〈1〉ϕξ) = J + 1.
In order to show s ≥ 1, ζ ′′ = ζ ′, ξ′′ = ξ′ and %′ = %, it suffices to check L = ζ ′′ + %′. By the induction

hypothesis we have ϕζ′′ ≤ 〈1〉ϕξ′′ ; hence by (8.4.10), we have

ϕζ′′ ⊕ ϕ% ≤ 〈1〉ϕξ′′ ⊕ ϕ%′ = 〈2〉ϕξ < ϕξ;

thus we get ζ ′′ + %′ � ξ by Grothendieck-Katz ([9], Theorem 2.3.1). If L 6= ζ ′′ + %′, then by Lemma 8.19
there exists a breaking point P of ζ ′′ + %′ such that L � P � ξ. This is a contradiction.

Proposition 8.22. For the type (II2) we have r, s ≥ 1. Put

ζ ′ :=
∑s−1

i=−r+1 ζi,

ξ′ := (m(1) − m−r, n
(1) − n−r) + (m(2) − ms, n

(2) − ns)
+(n(2) − ns,m

(2) − ms) + (n(1) − n−r,m
(1) − m−r),

% := (m−r, n−r) + (ms, ns) + (ns, ms) + (n−r,m−r).

(See the figure (6.5.3). Note ζ ′ ≺ ξ′ is of type (B).) Then we have 〈3〉ϕξ = 〈1〉ϕξ′ ⊕ ϕ%.

Proof. This can be shown in the similar way as in the cases (I) and (II1). Use Corollary 6.12.

For the type (II`≥2) we define {1}ϕξ by

{1}ϕξ(i) :=

{
ϕξ(i) for i 6= J + `,

ϕξ(i) − 1 for i = J + `

for i = 1, . . . , g, and for type (II`≥3) we define {2}ϕξ by

{2}ϕξ(i) :=

{
ϕξ(i) for i 6= J + `, J + ` − 1,

ϕξ(i) − 1 for i = J + `, J + ` − 1

for i = 1, . . . , g. Note 〈2〉ϕξ = 〈1〉({1}ϕξ) for (II`≥2) and 〈3〉ϕξ = 〈1〉({2}ϕξ) for (II`≥3).

Proposition 8.23. For the type (II`≥3), we have r ≥ 1. Put

ζ ′ :=
∑s

i=−r+1 ζi,

ξ′ := (m(1) − m−r, n
(1) − n−r) + (m(2), n(2)) + (n(2),m(2)) + (n(1) − n−r,m

(1) − m−r),
% := (m−r, n−r) + (n−r,m−r).

(See the figure (6.3.5). Note ζ ′ ≺ ξ′ is of type (B).) Then we have 〈3〉ϕξ = 〈2〉ϕξ′ ⊕ ϕ%. Moreover we
have ϕζ′ ≤ 〈2〉ϕξ′ .

Proof. We define m1, n1, m2 and n2 by m1 + m2 = m(1), n1 + n2 = n(1) and m1n2 − n1m2 = 1. We put

%′ = (m2, n2) + (n2,m2),
ξ′′ = (m1, n1) + (m(2), n(2)) + (n(2),m(2)) + (n1, m1).

Let ζ ′′ be the symmetric Newton polygon such that ζ ′′ ≺ ξ′′ satisfies (S) and (m1 + n1, n1) 6∈ ζ ′′. Clearly
ζ ′′ ≺ ξ′′ is of type (B). Let L be as in (8.4.8). Note by the construction there is no lattice point Q with
L � Q � ξ.
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Let [2]B, B1 = (B1, δ1) and BΓyx
be as in § 6.3. Clearly the final type of {2}ϕξ is equal to [2]B ⊕ [2]B∨,

and the final type of ϕξ′′ is equal to B1. Moreover the decomposition B1 = BΓyx ⊕C2 is the decomposition
“B = C1 ⊕ C2” for ϕξ′′ . Recall bJ+1 ∈ C2 (Lemma 8.17 (4)); then applying Lemma 5.7 to x, y ∈ C1 ⊂ B,
we see that bJ is an element of Γyx \ {y}; hence we have bJ ∈ B1. Clearly the four elements bJ , bJ+1, x
and z of B1 satisfy bJ < bJ+1 < x < z and

(δ1(bJ), δ1(bJ+1), δ1(x), δ1(z)) = (0, 1, 0, 1). (8.4.11)

Hence ϕξ′′ is of type (II`≥2). By Lemma 8.18 (1) and Corollary 6.7, we have

{2}ϕξ = {1}ϕξ′′ ⊕ ϕ%′ . (8.4.12)

Applying 〈1〉 to the both sides of (8.4.12), we have

〈3〉ϕξ = 〈2〉ϕξ′′ ⊕ ϕ%′ . (8.4.13)

Let (r′′, s′′) be the “(r, s)” for ζ ′′ ≺ ξ′′. Then by (6.2.4) and (8.4.11) we have (r′′, s′′) 6= (0, 0). Hence we
have ϕζ′′ ≤ 〈2〉ϕξ′′ by the induction hypothesis.

It remains to show r ≥ 1, ζ ′′ = ζ ′, ξ′′ = ξ′ and %′ = %. For this, it suffices to check L = %′ + ζ ′′. By
(8.4.13), we have

ϕζ′′ ⊕ ϕ%′ ≤ 〈2〉ϕξ′′ ⊕ ϕ%′ = 〈3〉ϕξ < ϕξ;

thus we get %′ + ζ ′′ � ξ by Grothendieck-Katz ([9], Theorem 2.3.1). If L 6= %′ + ζ ′′, then by Lemma 8.19
there exists a breaking point P of %′ + ζ ′′ such that L � P � ξ. This is a contradiction.

Proof of Proposition 8.14. For r = s = 0 this is nothing but Lemma 8.15. If ζ ≺ ξ is of types (I) and
(II`≤2), then the proof can be done by the same way as that of Corollary 8.7 thanks to Propositions 8.20,
8.21 and 8.22.

Assume ζ ≺ ξ is of type (II`≥3). Let ζ ′ ≺ ξ′ be as in Proposition 8.23. Put c = c(ξ; ζ) and c′ = c(ξ′; ζ ′).
Note c′ = c− 1. By the induction hypothesis, there are elementary sequences ϕ′

0 < · · · < ϕ′
c′−2 such that

ϕ′
0 = ϕζ′ and ϕ′

c′−2 = 〈2〉ϕξ′ . We put ϕi = ϕ′
i ⊕ϕ% for i = 0, . . . , c−3 and set ϕc−2 = 〈2〉ϕξ, ϕc−1 = 〈1〉ϕξ

and ϕc = ϕξ. Note ϕ0 = ϕζ′ ⊕ ϕ% = ϕζ . It remains to show ϕi < ϕi+1 for all 0 ≤ i < c. This means
ϕ′

i ⊕ ϕ% < ϕ′
i+1 ⊕ ϕ% for 0 ≤ i ≤ c − 3,

〈2〉ϕξ′ ⊕ ϕ% < 〈2〉ϕξ for i = c − 2,
〈2〉ϕξ < 〈1〉ϕξ for i = c − 1,
〈1〉ϕξ < ϕξ for i = c.

The first, the third and the fourth inequalities are obvious. The second inequality follows from Proposition
8.23: 〈3〉ϕξ = 〈2〉ϕξ′ ⊕ ϕ%.
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[22] T. Wedhorn: Specialization of F -zips. Preprint. arXiv: 0507175v1

Institute for the Physics and Mathematics of the Universe, The University of Tokyo,
5-1-5 Kashiwanoha Kashiwa-shi Chiba 277-8582 Japan.

E-mail address: harasita at ms.u-tokyo.ac.jp

32


