On the affineness of distinguished Deligne-Lusztig varieties

Shushi Harashita

April 17, 2013

Abstract

We consider Deligne-Lusztig varieties in the variety of parabolic subgroups with a fixed type. In this paper, we give a criterion for the affineness of distinguished Deligne-Lusztig varieties, extending and refining the original Deligne-Lusztig criterion. In particular we show that distinguished Deligne-Lusztig varieties are affine except possibly for small q, and that all distinguished Deligne-Lusztig varieties associated to rank-2 groups are affine.

1 Introduction

Let p be a prime. Let k_{0} be a finite field of characteristic p. Let k be an algebraic closure of k_{0}. Let G_{0} be a connected reductive algebraic group over k_{0} and set $G=G_{0} \times \operatorname{Spec}(k)$. Let frob be the Frobenius map on G_{0}. Let F be an endomorphism of G over k such that $F^{d}=f r o b \times \operatorname{Spec}(k)$ for some d. Let q be the positive real number with $q^{d}=\left|k_{0}\right|$.

We fix an F-stable Borel subgroup B and a maximal torus T contained in B. Let W be the Weyl group $N_{G}(T) / T$. We write \dot{w} for a representative in $N_{G}(T)$ of $w \in W$. Let Φ denote the set of roots. Let Φ^{+}(resp. Φ^{-}) be the set of positive roots (resp. the set of negative roots) with respect to B. We denote by Δ the set of simple roots. Let U_{α} be the root group associated to $\alpha \in \Phi$. The endomorphism F induces a permutation σ of Φ so that F sends U_{α} to $U_{\sigma(\alpha)}$. Since B is F-stable, σ stabilizes Φ^{+}and hence Δ.

Let I be a subset of Δ. Write W_{I} for the subgroup of W generated by the simple reflections s_{α} associated to $\alpha \in I$. We denote by P_{I} the standard parabolic subgroup $B W_{I} B$. A parabolic subgroup of G is called of type I if it is conjugate to P_{I}. Let X_{I} be the set of parabolic subgroups of type I, which has a canonical structure of a smooth projective k-scheme. Let J be another subset of Δ. We write ${ }^{g} x$ for $g x g^{-1}$ for $g, x \in G$. Consider the diagonal action of G on $X_{I} \times X_{J}$ and let $O_{I J}(w)$ denote the orbit of $\left(P_{I},{ }^{\dot{w}} P_{J}\right)$. Then we have

$$
\begin{equation*}
X_{I} \times X_{J}=\bigsqcup_{w \in W_{I} \backslash W / W_{J}} O_{I J}(w) \tag{1}
\end{equation*}
$$

For $w \in W_{I} \backslash W / W_{J}$, we denote by \tilde{w} the minimal-length representative in w (cf. [4], Ch. IV, Ex. §1,3). The orbit $O_{I J}(w)$ is called distinguished if $I=\tilde{w} J$. This is equivalent to that there exists a representative v in w satisfying $I=v J$ (such v turns out to be \tilde{w}).

The (generalized) Deligne-Lusztig variety $X_{I}(w)$ associated to $w \in W_{I} \backslash W / W_{\sigma I}$ is the locally closed subscheme of X_{I} consisting of parabolic subgroups P such that $(P, F(P)) \in$ $O_{I, \sigma I}(w)$. In other words $X_{I}(w)$ is the intersection of $O_{I, \sigma I}(w)$ and the graph of F. We call $X_{I}(w)$ distinguished if $I=\tilde{w} \sigma I$.

The affineness of $X_{I}(w)$ is one of our main concern. In the case of $I=\emptyset$, we have several criterions for the affineness. The original paper [5] has already provided a strong combinatorial criterion ([5], Theorem 9.7), which in particular implies that $X(w)$ is affine
if q is at least the Coxeter number. Orlik and Rapoport [11] conjectured that $X(w)$ is affine if w is minimal in its F-conjugacy class, with a proof in the case of the split classical groups. This conjecture was proved in general by He [8]. Bonnafé and Rouquier [3] found a new criterion, which implies Orlik-Rapoport conjecture. Here we remark that no non-affine Deligne-Lusztig variety has been found so far. However for general I (without $I=\tilde{w} \sigma I$), there are many examples of non-affine $X_{I}(w)$ (cf. [2], Introduction). This would come from that the decomposition of the flag variety X_{I} into the Deligne-Lusztig varieties is coarse. In [2] Bédard pointed out this and introduced a finer decomposition:

$$
\begin{equation*}
X_{I}=\coprod_{w \in{ }^{I} W} X_{I}^{\mathrm{fin}}(w) \tag{2}
\end{equation*}
$$

with the set ${ }^{I} W$ of minimal-length representatives of $W_{I} \backslash W$, and showed that $X_{I}^{\mathrm{fin}}(w)$ is isomorphic to the distinguished Deligne-Lusztig variety $X_{J}(w)$ with $J:=\bigcap_{n \geq 0}(w \sigma)^{n} I$, see [2], II, 13.

Now it would be natural to expect that almost all distinguished Deligne-Lusztig varieties are affine. In this paper, we confirm it by extending the Deligne-Lusztig criterion to our general parabolic case, and also refine a little bit the criterion (even in the case $I=\emptyset$) in order to include all distinguished Deligne-Lusztig varieties in rank-2 groups.

Acknowledgments

I would like to thank Professor Ulrich Görtz for many valuable remarks on this paper. I am very grateful to the anonymous referees for helpful comments to earlier versions of this paper. This research is supported by JSPS Grant-in-Aid for Young Scientists (B) 21740006.

2 The generalized Deligne-Lusztig sections

In this section, we construct a global section of a certain invertible sheaf on $O_{I J}(w)$ and investigate a prolongation of this section to the Zariski closure of $O_{I J}(w)$ in $X_{I} \times X_{J}$.

2.1 Construction

Let I be a subset of Δ. We denote by L_{I} the standard Levi subgroup of P_{I}, which is the centralizer in G of T_{I}, where T_{I} is the identity component of $\bigcap_{\alpha \in I} \operatorname{Ker}(\alpha)$. For an algebraic group H, let $\mathrm{X}(H)$ denote the character $\operatorname{group} \operatorname{Hom}\left(H, \mathbb{G}_{m}\right)$ and let $\mathrm{Y}(H)$ denote the cocharacter group $\operatorname{Hom}\left(\mathbb{G}_{m}, H\right)$. We freely use the identifications

$$
\begin{equation*}
\mathrm{X}\left(P_{I}\right)=\mathrm{X}\left(L_{I}\right)=\left\{\lambda \in \mathrm{X}(T) \mid\left\langle\lambda, \alpha^{\vee}\right\rangle=0 \text { for } \alpha \in I\right\} \tag{3}
\end{equation*}
$$

which are induced by the restriction maps (cf. [9], II, 1.18). Here \langle,$\rangle is the canonical$ pairing $\mathrm{X}(T) \times \mathrm{Y}(T) \rightarrow \mathbb{Z}$ and $\alpha^{\vee} \in \mathrm{Y}(T)$ is the coroot of α (cf. [5], 5.1).

Let $w \in W$. Let $\lambda \in \mathrm{X}\left(P_{I}\right)$. Consider the morphism $\rho: G \rightarrow O_{I J}(w)$ sending g to ${ }^{g}\left(P_{I},{ }^{w} P_{J}\right)$, which is a $P_{I} \cap{ }^{w} P_{J}$-torsor on $O_{I J}(w)$. We define an invertible sheaf $\mathcal{E}_{I J}^{w}(\lambda)$ on $O_{I J}(w)$ by

$$
\begin{equation*}
\mathcal{E}_{I J}^{w}(\lambda)(V)=\left\{f \in \mathcal{O}_{\rho^{-1}(V)}\left(\rho^{-1}(V)\right) \mid f(g x)=\lambda(x)^{-1} f(g) \text { for all } x \in P_{I} \cap{ }^{w} P_{J}\right\} \tag{4}
\end{equation*}
$$

for any open subscheme V of $O_{I J}(w)$. We have a commutative diagram:

where sw sends $(P, Q) \in O_{I J}(w)$ to $(Q, P) \in O_{J I}\left(w^{-1}\right)$.
Lemma 2.1.1. There exists an isomorphism of invertible sheaves on $O_{I J}(w)$

$$
\mathcal{E}_{I J}^{w}(\lambda) \longrightarrow \operatorname{sw}^{*} \mathcal{E}_{J I}^{w^{-1}}\left(w^{-1} \lambda\right) .
$$

Proof. Let V be an open subscheme of $O_{I J}(w)$. Let $f_{1} \in \mathcal{E}_{I J}^{w}(\lambda)(V)$. To f_{1} we can associate $f_{2} \in \mathcal{E}_{J I}^{w^{-1}}\left(w^{-1} \lambda\right)(\operatorname{sw}(V))$ as follows. For any $h \in G$ mapped into $\operatorname{sw}(V)$ we set $f_{2}(h)=f_{1}\left(h \dot{w}^{-1}\right)$. This defines an element of $\operatorname{sw}^{*} \mathcal{E}_{J I}^{w^{-1}}\left(w^{-1} \lambda\right)$, since $G \rightarrow O_{J I}\left(w^{-1}\right)$ is a $P_{J} \cap{ }^{w^{-1}} P_{I}$-torsor and we have $f_{2}(h y)=f_{1}\left(h \dot{w}^{-1} \operatorname{ad}(\dot{w})(y)\right)=\lambda(\operatorname{ad}(\dot{w})(y))^{-1} f_{1}\left(h \dot{w}^{-1}\right)=$ $\left(w^{-1} \lambda\right)(y)^{-1} f_{2}(h)$ for any $y \in P_{J} \cap w^{-1} P_{I}$.

Consider the L_{I}-torsor

$$
\begin{equation*}
\pi: G / U_{I} \longrightarrow X_{I} \tag{5}
\end{equation*}
$$

Let $\mathcal{L}_{I}(\lambda)$ be the invertible sheaf on X_{I} defined by

$$
\begin{equation*}
\mathcal{L}_{I}(\lambda)(V)=\left\{f \in \mathcal{O}_{\pi^{-1}(V)}\left(\pi^{-1}(V)\right) \mid f(g x)=\lambda(x)^{-1} f(g) \text { for all } x \in L_{I}\right\} \tag{6}
\end{equation*}
$$

for any open subscheme V of X_{I}.
Proposition 2.1.2. Assume that P_{I} and ${ }^{w} P_{J}$ have a common Levi subgroup. For any $\lambda \in \mathrm{X}\left(P_{I}\right)$, we have an isomorphism $\Psi(\dot{w}): \operatorname{pr}_{1}^{*} \mathcal{L}_{I}(\lambda) \rightarrow \operatorname{pr}_{2}^{*} \mathcal{L}_{J}\left(w^{-1} \lambda\right)$ on $O_{I J}(w)$.

Proof. We claim that there exists a canonical isomorphism $\mathcal{E}_{I J}^{w}(\lambda) \simeq \operatorname{pr}_{1}^{*} \mathcal{L}_{I}(\lambda)$. Indeed let V be any open subscheme of $O_{I J}(w)$ and set $V^{\prime}=\operatorname{pr}_{1}(V)$. The morphism $\rho^{-1}(V) \rightarrow$ $\pi^{-1}\left(V^{\prime}\right) \times_{V^{\prime}} V$ (an open base-change of $\left.G \rightarrow G / U_{I} \times_{X_{I}} O_{I J}(w)\right)$ is the quotient by $U_{I} \cap{ }^{w} P_{J}$. We also have $P_{I} \cap{ }^{w} P_{J}=L_{I}\left(U_{I} \cap{ }^{w} P_{J}\right)$. Hence we have

$$
\begin{aligned}
\operatorname{pr}_{1}^{*} \mathcal{L}_{I}(\lambda)(V) & =\left\{f \in \mathcal{O}_{\pi^{-1}\left(V^{\prime}\right)}\left(\pi^{-1}\left(V^{\prime}\right)\right) \mid f(g x)=\lambda(x)^{-1} f(g), x \in L_{I}\right\} \otimes_{\mathcal{O}_{V^{\prime}}\left(V^{\prime}\right)} \mathcal{O}_{V}(V) \\
& \simeq\left\{h \in \mathcal{O}_{\rho^{-1}(V)}\left(\rho^{-1}(V)\right) \mid h(g x)=\lambda(x)^{-1} h(g), x \in P_{I} \cap{ }^{w} P_{J}\right\} \\
& =\mathcal{E}_{I J}^{w}(\lambda)(V)
\end{aligned}
$$

Similarly we have $\operatorname{sw}^{*} \mathcal{E}_{J I}^{w^{-1}}\left(w^{-1} \lambda\right) \simeq \operatorname{pr}_{2}^{*} \mathcal{L}_{J}\left(w^{-1} \lambda\right)$. Hence the proposition follows from Lemma 2.1.1.

Remark 2.1.3. (1) If $I=w J$, then P_{I} and ${ }^{w} P_{J}$ have a common Levi subgroup, see [2], II, 7.
(2) For a $t \in T$, we have $\Psi(t \dot{w})=\lambda(t) \Psi(\dot{w})$. We do not need to care about the choice of \dot{w}, since the multiplication by non-zero constant causes nothing in our arguments. We remark also that $\Psi(\dot{w})$ (up to constant multiplication) depends only on the class of w in $W_{I} \backslash W / W_{J}$.

2.2 Prolongation

Let $w \in W$. Assume $I=w J$. We fix a reduced expression of w. Let v be any element of $W_{I} w W_{J}$. We choose a reduced expression $v=s_{1} \cdots s_{\ell}$ such that for some $c, d(1 \leq c \leq d \leq \ell)$ we have $s_{i} \in W_{I}$ for $i<c$ and $s_{i} \in W_{J}$ for $i>d$ and $w=s_{c} \cdots s_{d}$ that is the fixed reduced expression of w, see [4], Ch.IV, Ex. §1, 3. (One may take $d=\ell$, since we have $W_{I} w W_{J}=W_{I} w$ by the assumption $I=w J$.) We write $v=v_{i} s_{i} v_{i}^{\prime}$, where $v_{i}=s_{1} \cdots s_{i-1}$ and $v_{i}^{\prime}=s_{i+1} \cdots s_{\ell}$. Let $\alpha_{i} \in \Delta$ be the root associated to s_{i}. The set $\Phi^{+}(v)=\Phi^{+} \cap v \Phi^{-}$is equal to $\left\{v_{i} \alpha_{i}\right\}_{i=1}^{\ell}$ (cf. [4], Ch.VI, §1, 6, Cor. 2). Let

$$
\begin{equation*}
\kappa: \quad \Phi^{+}(v) \longrightarrow W_{I} \backslash W / W_{J} \tag{7}
\end{equation*}
$$

be the map sending $v_{i} \alpha_{i}$ to the class of $v_{i} v_{i}^{\prime}$.
Let $\langle I\rangle$ be the submodule of $\mathrm{X}(T)$ generated by elements of I. Set $\Sigma_{I}=\Phi \backslash\langle I\rangle$ and $\Sigma_{I}^{ \pm}=\Phi^{ \pm} \backslash\langle I\rangle$. Put $\Sigma_{I}^{+}(v):=\Sigma_{I}^{+} \cap v \Sigma_{J}^{-}$. Let

$$
\begin{equation*}
D_{I}^{0}(v)=\left\{\lambda \in \mathrm{X}\left(P_{I}\right) \otimes \mathbb{Q} \mid\left\langle\lambda, \alpha^{\vee}\right\rangle>0 \text { for } \alpha \in \Sigma_{I}^{+}(v)\right\} \tag{8}
\end{equation*}
$$

and $D_{I}(v)$ the set defined by replacing $>$ in (8) by \geq. For $\lambda \in D_{I}(v)$, we set

$$
\begin{equation*}
R_{I}^{\lambda}(v)=\left\{\alpha \in \Sigma_{I}^{+}(v) \mid\left\langle\lambda, \alpha^{\vee}\right\rangle>0\right\} \tag{9}
\end{equation*}
$$

and put $\partial_{I}^{\lambda}(v):=\kappa\left(R_{I}^{\lambda}(v)\right)$. As $W_{I} \cdot \Sigma_{I}^{+}(v)$ is independent of the choice of $v \in W_{I} w W_{J}$, so are $D_{I}^{0}(v)$ and $W_{I} \cdot R_{I}^{\lambda}(v)$. Also $\partial_{I}^{\lambda}(v)$ is independent of the choice of v and its reduced expression as above.

Proposition 2.2.1. Let $\lambda \in \mathrm{X}\left(P_{I}\right)$. The isomorphism $\Psi(\dot{w}): \operatorname{pr}_{1}^{*} \mathcal{L}_{I}(\lambda) \rightarrow \operatorname{pr}_{2}^{*} \mathcal{L}_{J}\left(w^{-1} \lambda\right)$ (obtained in Proposition 2.1.2 with Remark 2.1.3) extends over the closure of $O_{I J}(w)$ in $X_{I} \times X_{J}$ if and only if $\lambda \in D_{I}(w)$; and then it vanishes precisely on the closures of $O_{I J}\left(w^{\prime}\right)$ for $w^{\prime} \in \partial_{I}^{\lambda}(w)$.
Proof. Let Z be the closure of $O_{I J}(w)$. The normality of Schubert varieties ([1] and [12]) implies that Z is normal. Indeed let S be the closure of $P_{I} w P_{J} / P_{J}$ in X_{J} and set $X=X_{\emptyset}$; we have that S is normal since it is the image by $\tau_{J}: X \rightarrow X_{J}$ of the Schubert variety in X associated to the longest element v in $W_{I} w W_{J}$ (cf. [10], Ch. 8, Ex. 2.11); we have $Z=\phi_{2}\left(\phi_{1}^{-1}(S)\right)$ with

$$
\begin{equation*}
X_{I} \times X_{J} \underset{\left(g P_{I} g^{-1}, x\right) \hookleftarrow(g, x)}{\phi_{2}} G \times X_{J} \xrightarrow[(g, x) \mapsto g^{-1} x]{\phi_{1}} X_{J}, \tag{10}
\end{equation*}
$$

whence Z is normal (cf. [10], Ch. 8, 2.25 and Ex. 2.11).
We choose a reduced expression $v=s_{1} \cdots s_{\ell}$ of the longest element v of $W_{I} w W_{J}$, as in the beginning of this subsection. Let Y be the closure of $O(v)$ in $X \times X$. Recall the Hansen-Demazure desingularization of Y. We inductively define $\bar{O}\left(s_{1}, \ldots, s_{i}\right)$ for $1 \leq i \leq \ell$ by

$$
\begin{equation*}
\bar{O}\left(s_{1}, \ldots, s_{i}\right)=\bar{O}\left(s_{1}, \ldots, s_{i-1}\right) \times_{X} \overline{O\left(s_{i}\right)} \tag{11}
\end{equation*}
$$

with $\bar{O}()=X$. We have an iterated fiber space

$$
\begin{equation*}
\bar{O}\left(s_{1}, \ldots, s_{\ell}\right) \rightarrow \bar{O}\left(s_{1}, \ldots, s_{\ell-1}\right) \rightarrow \cdots \rightarrow \bar{O}\left(s_{1}\right) \rightarrow X \tag{12}
\end{equation*}
$$

Let D_{i} be the divisor on $\bar{O}\left(s_{1}, \ldots, s_{\ell}\right)$ obtained as the inverse image of the divisor on $\bar{O}\left(s_{1}, \ldots, s_{i}\right)$ defined by $O(1) \subset \overline{O\left(s_{i}\right)}$. Let f be the morphism $\bar{O}\left(s_{1}, \ldots, s_{\ell}\right) \rightarrow Y$ sending $\left(B_{0}, \ldots, B_{\ell}\right)$ to $\left(B_{0}, B_{\ell}\right)$. This is a desingularization of Y and the union D of $D_{i}(1 \leq i \leq \ell)$ is a normal crossing divisor with $\bar{O}\left(s_{1}, \ldots, s_{\ell}\right) \backslash D \simeq O(v)$.

We have $\tau_{I}^{-1}\left(O_{I J}(w)\right)=\bigcup_{x \in W_{I} w W_{J}} O(x)$, whose closure is Y. In [5], (9.5) it was proved that the section $\tau_{I}^{*} \Psi(\dot{w})$ extends to Y if and only if $\lambda \in D_{\emptyset}(v)$. The latter condition is equivalent to $\lambda \in D_{I}(w)$, since $\lambda \in \mathrm{X}\left(P_{I}\right)$. The former condition is equivalent to that $\Psi(\dot{w})$ extends to the closure Z of $O_{I J}(w)$, since τ_{I} is proper with connected fibers $\left(\simeq P_{I} / B\right)$ and Z is normal. Moreover as in the proof of [5], (9.5) the order along D_{i} of $f^{*} \tau_{I}^{*} \Psi(\dot{w})$ (considered as a rational function) is equal to $\left\langle\lambda,\left(v_{i} \alpha_{i}\right)^{\vee}\right\rangle$, where $v_{i}=s_{1} \cdots s_{i-1}$ as above. This implies that $\Psi(\dot{w})$ vanishes only on the closures of $O_{I J}\left(w^{\prime}\right)$ for $w^{\prime} \in \partial_{I}^{\lambda}(v)=\partial_{I}^{\lambda}(w)$.

3 The affineness of distinguished Deligne-Lusztig varieties

We state and prove our results on the (quasi-)affineness of the distinguished Deligne-Lusztig varieties.

3.1 The quasi-affineness

Before dealing with the affineness, we give a remark about the quasi-affineness. Although Theorem 3.1.1 below looks a part of the folkfore (cf. Remark 3.1.2), it would be meaningful to give a proof along the original approach by Haastert [7].

Let I be a subset of Δ. Set $\Pi_{I}=\Delta \backslash I$. We define the chamber in $\mathrm{X}\left(P_{I}\right)$ by

$$
\begin{equation*}
C_{I}^{0}=\left\{\mu \in \mathrm{X}\left(P_{I}\right)_{\mathbb{R}} \mid\left\langle\mu, \alpha^{\vee}\right\rangle>0 \text { for } \alpha \in \Pi_{I}\right\} . \tag{13}
\end{equation*}
$$

Let F^{*} be the endomorphism of $\mathrm{X}(T)$ sending x to the composition $x \circ F$. Let F_{*} be the endomorphism of $\mathrm{Y}(T)$ sending y to the composition $F \circ y$. By [15], (11.2), there exists a collection of powers $q(\alpha)(\alpha \in \Phi)$ of p such that $F^{*} \sigma(\alpha)=q(\alpha) \alpha$ in $\mathrm{X}(T)$, see loc. cit. $\S 11$ for the details of $q(\alpha)$. We have $F_{*}\left(\alpha^{\vee}\right)=q(\alpha)(\sigma \alpha)^{\vee}$, since

$$
\begin{equation*}
\left\langle\sigma \beta, F_{*}\left(\alpha^{\vee}\right)\right\rangle=\left\langle F^{*} \sigma \beta, \alpha^{\vee}\right\rangle=q(\beta)\left\langle\beta, \alpha^{\vee}\right\rangle=q(\alpha)\left\langle\sigma \beta,(\sigma \alpha)^{\vee}\right\rangle \tag{14}
\end{equation*}
$$

for any $\beta \in \Phi$, where the last equality is proven in the proof of [15], (11.5).
Let $w \in W$. Assume $I=w \sigma I$. Then the endomorphism $F^{*} w^{-1}$ of $\mathrm{X}(T)$ induces an endomorphism of $\mathrm{X}\left(P_{I}\right)$, since for $\lambda \in \mathrm{X}\left(P_{I}\right)$ and for $\alpha \in I$ we have

$$
\begin{equation*}
\left\langle F^{*} w^{-1} \lambda, \alpha^{\vee}\right\rangle=\left\langle\lambda, w F_{*}\left(\alpha^{\vee}\right)\right\rangle=q(\alpha)\left\langle\lambda,(w \sigma \alpha)^{\vee}\right\rangle=0 . \tag{15}
\end{equation*}
$$

Theorem 3.1.1. All distinguished $X_{I}(w)$ are quasi-affine.
Proof. Let L_{w} be the endomorphism on $\mathrm{X}(T)$ sending μ to $F^{*} w^{-1} \mu-\mu$. We first claim that L_{w} is injective. Consider the endomorphism ${ }^{w} F$ of G sending x to $w F(x) w^{-1}$. Since some power of ${ }^{w} F$ is a composition of the frobenius map and an inner automorphism, the kernel of ${ }^{w} F$ is finite. Applying [15], (10.1) to ${ }^{w} F$ on T, the endomorphism of T sending t to $t^{-1 w} F(t)$ is surjective. This implies that L_{w} on $\mathrm{X}(T)$ is injective. Then the endomorphism on $\mathrm{X}\left(P_{I}\right)$ obtained by restricting L_{w} to $\mathrm{X}\left(P_{I}\right)$ is also injective. Hence there exists $\lambda \in \mathrm{X}\left(P_{I}\right)$ such that $L_{w}(\lambda) \in-C_{I}^{0}$. This means that the invertible sheaf \mathcal{L} associated to $L_{w}(\lambda)$ is ample. It follows from Proposition 2.1.2 that the restriction of $\Psi(\dot{w})$ to $X_{I}(w)$ gives a no-where vanishing section of \mathcal{L} on $X_{I}(w)$, namely \mathcal{L} is isomorphic to the structure sheaf over $X_{I}(w)$. Hence $X_{I}(w)$ is quasi-affine by [6], 5.1.2 on p.94.

Remark 3.1.2. Here is an alternative proof of this theorem, which the author learned from one of the referees. Consider

$$
Y_{I}(w):=\left\{g \in G \mid g^{-1} F g \in \dot{w} U_{\sigma I}\right\} / U_{I} \cap{ }^{\dot{w}} U_{\sigma I},
$$

which is a locally closed subvariety of G / U_{I}. Using $I=w \sigma I$, we have that $X_{I}(w)$ is the quotient of $Y_{I}(w)$ by the finite group consisting of ${ }^{w} F$-fixed points on L_{I}. The theorem follows from the facts that G / U_{I} is quasi-affine ([13], Theorem 3) and that the quotient of a quasi-affine variety by a finite group is also quasi-affine ([13], Lemma 2 to Theorem 1 and [14], III, §3, 12).

3.2 A criterion for the affineness

Let $w \in W$. We assume $I=w \sigma I$. Let $\lambda \in D_{I}(w)$ and set

$$
\begin{equation*}
X_{I}^{\lambda}(w):=\overline{X_{I}(w)}-\bigcup_{v \in \partial_{I}^{\lambda}(w)} \overline{X_{I}(v)} . \tag{16}
\end{equation*}
$$

Theorem 3.2.1. Let J be the smallest subset of Δ containing I with $F^{*} w^{-1} \lambda-\lambda \in-C_{J}^{0}$. If the restriction to $X_{I}^{\lambda}(w)$ of $\tau_{I J}: X_{I} \rightarrow X_{J}$ is quasi-finite, then $X_{I}^{\lambda}(w)$ is affine.

Remark 3.2.2. (1) If there exists $\lambda \in D_{I}(w)$ such that $I=J$ (i.e., $F^{*} w^{-1} \lambda-\lambda \in-C_{I}^{0}$), then the quasi-finiteness condition is trivially satisfied. In this case $X_{I}^{\lambda}(w)$ is affine.
(2) Let $w^{\prime} \in W_{I} \backslash W / W_{\sigma I}$ with $X_{I}\left(w^{\prime}\right) \subset X_{I}^{\lambda}(w)$ and $\operatorname{set} \mathcal{C}\left(w^{\prime}\right)=P_{I} w^{\prime} P_{\sigma I}$. That $\left.\tau_{I J}\right|_{X_{I}\left(w^{\prime}\right)}$ is quasi-finite is equivalent to that for every $x \in \mathcal{C}\left(w^{\prime}\right)$ there are only finitely many $h \in P_{J} / P_{I}$ such that $h^{-1} x F h \in \mathcal{C}\left(w^{\prime}\right)$. In particular every fiber of $\left.\tau_{I J}\right|_{X_{I}^{\lambda}(w)}$ consists of one point if and only if for every w^{\prime} as above and for every $u \in W_{J} \backslash W_{I}$, we have $u^{-1} \mathcal{C}\left(w^{\prime}\right) F u \cap \mathcal{C}\left(w^{\prime}\right)=\emptyset$.
(3) If $X_{I}^{\lambda}(w)$ is affine, then $X_{I}(w)$ is affine. In general, we claim that for any affine scheme X which is regular in codimension one and for any locally principal closed subscheme Y of X associated to a Cartier divisor D, we have that $X \backslash Y$ is affine. Since any invertible sheaf on an affine scheme is ample, we have an immersion $X \rightarrow \mathbf{P}^{N}$ associated to some power of $\mathcal{L}(D)$. Let \bar{X} be the closure of the image. Then $X \backslash Y$ is isomorphic to the intersection of two affine subschemes X and $\bar{X} \backslash H$ for a hyperplane H in \mathbf{P}^{N}. The claim follows from the well-known fact that the intersection of open affine subschemes of a scheme separated over an affine scheme is affine.
Proof of Theorem 3.2.1. Put $Y=X_{I}^{\lambda}(w)$. Let Z be the closure of Y in X_{I}. Since we have $X_{I}^{\lambda}(w)=X_{I}^{n \lambda}(w)$ for any natural number n, we if necessary replace λ by $n \lambda$ so that λ belongs to $\mathrm{X}\left(P_{I}\right)$. Let \mathcal{L} be the invertible sheaf associated to $F^{*} w^{-1} \lambda-\lambda$. Let V be the open subscheme of $\mathbf{P}\left(H^{0}(Z, \mathcal{L})^{*}\right)$ where $\Psi(\dot{w})$ does not vanish. By Proposition 2.2.1 we have a Cartesian product:

Note that V is affine and that ψ is proper (since ϕ is proper). Hence, in order to see that Y is affine, it suffices to show that ψ is quasi-finite. Let x be a point of the image of ψ. Let $y \in Y$ be any preimage of x. Let φ be a morphism $Y \hookrightarrow X_{I} \rightarrow \mathbf{P}\left(H^{0}\left(X_{I}, \mathcal{L}\right)^{*}\right)$ determined by \mathcal{L}. Since $H^{0}(Z, \mathcal{L})$ contains every element obtained by restricting an element of $H^{0}\left(X_{I}, \mathcal{L}\right)$, the point $x^{\prime}:=\varphi(y)$ is determined by x. This means $\psi^{-1}(x) \subset \varphi^{-1}\left(x^{\prime}\right)$. Since $F^{*} w^{-1} \lambda-\lambda \in-C_{J}^{0}$, the morphism φ factors as $Y \hookrightarrow X_{I} \rightarrow X_{J} \hookrightarrow \mathbf{P}\left(H^{0}\left(X_{I}, \mathcal{L}\right)^{*}\right)$. Hence the quasi-finiteness of the restriction to $X_{I}^{\lambda}(w)$ of $\tau_{I J}: X_{I} \rightarrow X_{J}$ shows that $\psi^{-1}(x)$ is finite.

Lemma 3.2.3. Let $\lambda \in \mathrm{X}\left(P_{I}\right)_{\mathbb{Q}}$. If $F^{*} w^{-1} \lambda \in-C_{I}^{0}$, then we have $\lambda \in D_{I}^{0}(w)$.
Proof. Let $\alpha \in \Sigma_{I}^{+}(w)\left(=\Sigma_{I}^{+} \cap w \Sigma_{\sigma I}^{-}\right)$. Put $\beta:=(w \sigma)^{-1} \alpha$. Since $\beta \in \Sigma_{I}^{-}$, we have $\left\langle\lambda, \alpha^{\vee}\right\rangle=q(\beta)^{-1}\left\langle F^{*} w^{-1} \lambda, \beta^{\vee}\right\rangle>0$.

We write $\Pi_{I}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ so that $\Pi_{I} \cap w \Sigma_{\sigma I}^{+}=\left\{\alpha_{1}, \ldots, \alpha_{c}\right\}$ and $\Pi_{I} \cap w \Sigma_{\sigma I}^{-}=$ $\left\{\alpha_{c+1}, \ldots, \alpha_{r}\right\}$. Put $\beta_{i}=(w \sigma)^{-1} \alpha_{i}$. Note that $\beta_{i} \in \Sigma_{I}^{+}$for $i \leq c$ and $\beta_{i} \in \Sigma_{I}^{-}$for $i>c$. Let ω_{i} be the fundamental weight corresponding to α_{i} for $1 \leq i \leq r$.
Corollary 3.2.4. If $q(\beta)>\sum_{i=1}^{c}\left\langle\omega_{i}, \beta\right\rangle$ for every $\beta \in\left\{\beta_{1}, \ldots, \beta_{c}\right\}$, then $X_{I}(w)$ is affine.
Proof. Put $\mu=\sum_{j=1}^{r} \varepsilon_{j} \omega_{j}$ with positive rational numbers ε_{j}. Let λ be the element of $\mathrm{X}\left(P_{I}\right)_{\mathbb{Q}}$ with $\mu=-F^{*} w^{-1} \lambda$. By the above lemma we have $\lambda \in D_{I}^{0}(w)$. By Remark 3.2.2, (1), it suffices to show that $F^{*} w^{-1} \lambda-\lambda \in-C_{I}^{0}$ for some choice of $\varepsilon_{j}(j=1, \ldots, r)$. We have

$$
\begin{equation*}
\left\langle F^{*} w^{-1} \lambda-\lambda, \alpha_{i}^{\vee}\right\rangle=\left\langle\mu,-\alpha_{i}^{\vee}+q\left(\beta_{i}\right)^{-1} \beta_{i}^{\vee}\right\rangle=-\varepsilon_{i}+q\left(\beta_{i}\right)^{-1} \sum_{j=1}^{r} \varepsilon_{j}\left\langle\omega_{j}, \beta_{i}^{\vee}\right\rangle \tag{17}
\end{equation*}
$$

For $i>c$, this is negative since $\beta_{i} \in \Sigma_{I}^{-}$. For $i \leq c$, the assumption $q\left(\beta_{i}\right)>\sum_{i=1}^{c}\left\langle\omega_{i}, \beta_{i}^{\vee}\right\rangle$ implies that $\left\langle F^{*} w^{-1} \lambda-\lambda, \alpha_{i}^{\vee}\right\rangle<0$ for $\varepsilon_{1}=\cdots=\varepsilon_{c}=1$ and sufficiently small $\varepsilon_{c+1}, \ldots, \varepsilon_{r}$.

What we can say for $|I| \geq|\Delta|-2$ is as follows.
Corollary 3.2.5. (1) If $|I|=|\Delta|-1$, then $X_{I}(w)$ is affine.
(2) Assume $|I|=|\Delta|-2$. We choose $\alpha_{1}, \alpha_{2} \in \Pi_{I}$ so that $\beta_{1}>\beta_{2}$ with $\beta_{i}=(w \sigma)^{-1} \alpha_{i}$. Assume that $\left\langle\omega_{1}, \beta_{1}^{\vee}\right\rangle<q\left(\beta_{1}\right)$ if $w \neq 1$. Then $X_{I}(w)$ is affine.

Proof. (1) If $c=0$, then this follows from Corollary 3.2.4. If $c=1$, then w stabilizes Σ_{I}^{+}, whence $w=1$; then $X_{I}(w)$ consists of finitely many points.
(2) If $c \leq 1$, then this follows from Corollary 3.2.4 and the assumption $\left\langle\omega_{1}, \beta_{1}^{\vee}\right\rangle<q\left(\beta_{1}\right)$. If $c=2$, then w stabilizes Σ_{I}^{+}, whence $w=1$; then $X_{I}(w)$ consists of finitely many points.

Here is a remark to Corollary 3.2.5, (2).
Remark 3.2.6. Assume that α_{1} and α_{2} are in a σ-stable irreducible component of Φ, say Φ^{\prime}. Let us look at the condition $\left\langle\omega_{1}, \beta_{1}^{\vee}\right\rangle<q\left(\beta_{1}\right)$ for each type of $\left(\Phi^{\prime}, \sigma\right)$. First assume that σ preserves lengths of roots (in this case $q(\alpha)=q$ for all $\alpha \in \Phi^{\prime}$). The number $\left\langle\omega_{1}, \beta_{1}^{\vee}\right\rangle$ is at most the biggest number m of $\left\langle\omega, \beta^{\vee}\right\rangle$ where ω is a fundamental weight and β is a root with the same length as the simple root α corresponding to ω. This number m is 1 for A_{n} and B_{2}, and 2 for B_{n}, C_{n} and $D_{n}(n \geq 3)$, and 3 for E_{6}, and 4 for E_{7}, and 6 for E_{8}, and 3 for F_{4}, and 2 for G_{2}. If σ does not preserve lengths of roots, the maximal possible number of $\left\langle\omega_{1}, \beta_{1}^{\vee}\right\rangle$ is 1 for ${ }^{2} B_{2}$, and 4 for ${ }^{2} F_{4}$, and 3 for ${ }^{2} G_{2}$.

Corollary 3.2.7. All distinguished Deligne-Lusztig varieties associated to rank-2 groups are affine.

Proof. It remains to study the case of G_{2} with $q=2$ (and $I=\emptyset$) and the case of ${ }^{2} G_{2}$ with $q=\sqrt{3}$ (and $I=\emptyset$), since to the other cases Corollary 3.2.5 is applicable by Remark 3.2.6. In a straightforward way, one can check that the w 's to which Corollary 3.2 .5 is not applicable are of length 3 for G_{2} and of length 2 or 4 for ${ }^{2} G_{2}$. In order to reduce cases, we choose $\alpha_{1}, \alpha_{2} \in \Delta$ so that $\beta_{1}>\beta_{2}$ with $\beta_{i}=(w \sigma)^{-1} \alpha_{i}$. Let s_{1} and s_{2} be the simple reflections corresponding to α_{1} and α_{2} respectively. The above w 's are expressed as $s_{2} s_{1} s_{2}$ for G_{2} and as $s_{2} s_{1}$ or $s_{2} s_{1} s_{2} s_{1}$ for ${ }^{2} G_{2}$. (Two cases in each are treated simultaneously.)

Let $\lambda \in \mathrm{X}\left(P_{I}\right)_{\mathbb{Q}}$ with $\omega_{1}=-F^{*} w^{-1} \lambda$. By Lemma 3.2.3, we have $\lambda \in D_{I}(w)$. Now we apply Theorem 3.2.1 to λ. We have $J=\left\{\alpha_{1}\right\}$ and $X^{\lambda}(w)=X(w) \cup X\left(w^{\prime}\right)$, where $w^{\prime}=s_{2} s_{1}$ in the G_{2}-case, $w^{\prime}=s_{2}$ in the ${ }^{2} G_{2}$-case with $\ell(w)=2$ and $w^{\prime}=s_{2} s_{1} s_{2}$ in the ${ }^{2} G_{2}$-case with $\ell(w)=4$. It is clear from [4] $\S 2,1,(3)$ and (3^{\prime}) on p. 16 that $s_{1}^{-1} \mathcal{C}(v) F s_{1} \cap \mathcal{C}(v)=\emptyset$ for $v=w$ and w^{\prime}. Hence it follows from Remark 3.2.2, (2) that every fiber of $\tau_{\emptyset J} \mid X^{\lambda}(w)$ consists of one element. Thus $X^{\lambda}(w)$ is affine by Theorem 3.2.1; hence $X(w)$ is affine, see Remark 3.2.2, (3).

References

[1] H. H. Andersen: Schubert varieties and Demazure's character formula. Invent. Math. 79 (1985), 611-618.
[2] R. Bédard: On the Brauer liftings for modular representations. J. Algebra 93 (1985), no. 2, 332-353.
[3] C. Bonnafé and R. Rouquier: Affineness of Deligne-Lusztig varieties for minimal length elements. J. Algebra 320 (2008), no. 3, 1200-1206.
[4] N. Bourbaki: Lie groups and Lie algebras. Chapters 4-6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002.
[5] P. Deligne and G. Lusztig: Representations of reductive groups over finite fields. Ann. of Math. (2) 103 (1976), no. 1, 103-161.
[6] A Grothendieck: Eléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Etudes Sci. Publ. Math. 8 (1961).
[7] B. Haastert: Die Quasiaffinität der Deligne-Lusztig-Varietäten. J. Algebra 102 (1986), no. 1, 186-193.
[8] X. He: On the affineness of Deligne-Lusztig varieties. J. Algebra 320 (2008), no. 3, 1207-1219.
[9] J. C. Jantzen: Representations of algebraic groups. Second edition. Mathematical Surveys and Monographs, 107. American Mathematical Society, Providence, RI, 2003.
[10] Q. Liu: Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, 6. 2002.
[11] S. Orlik and M. Rapoport: Deligne-Lusztig varieties and period domains over finite fields. J. Algebra 320 (2008), no. 3, 1220-1234.
[12] S. Ramanan and A. Ramanathan: Projective normality of flag varieties and Schubert varieties. Invent. Math. 79 (1985), 217-224.
[13] M. Rosenlicht: On quotient varieties and the affine embedding of certain homogeneous spaces. Trans. Amer. Math. Soc. 101 (1961), 211-223.
[14] J.-P. Serre: Groupes algébriques et corps de classes. Hermann, Paris, 1959.
[15] R. Steinberg: Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80 American Mathematical Society, Providence, R.I. 1968

Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 Japan.
E-mail address: harasita at ynu.ac.jp

