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Abstract

We consider Deligne-Lusztig varieties in the variety of parabolic subgroups with
a fixed type. In this paper, we give a criterion for the affineness of distinguished
Deligne-Lusztig varieties, extending and refining the original Deligne-Lusztig criterion.
In particular we show that distinguished Deligne-Lusztig varieties are affine except
possibly for small g, and that all distinguished Deligne-Lusztig varieties associated to
rank-2 groups are affine.

1 Introduction

Let p be a prime. Let kg be a finite field of characteristic p. Let k be an algebraic closure
of kg. Let G be a connected reductive algebraic group over kg and set G = Go x Spec(k).
Let frob be the Frobenius map on Gy. Let F' be an endomorphism of G over k such that
F% = frob x Spec(k) for some d. Let ¢ be the positive real number with ¢¢ = |ko|.

We fix an F-stable Borel subgroup B and a maximal torus 7" contained in B. Let W
be the Weyl group Ng(T')/T. We write w for a representative in Ng(T') of w € W. Let
® denote the set of roots. Let ®* (resp. ®~) be the set of positive roots (resp. the set of
negative roots) with respect to B. We denote by A the set of simple roots. Let U, be the
root group associated to o € ®. The endomorphism F' induces a permutation o of ® so that
F sends U, to Uy (q). Since B is F-stable, o stabilizes ®* and hence A.

Let I be a subset of A. Write W} for the subgroup of W generated by the simple
reflections s, associated to a € I. We denote by P; the standard parabolic subgroup
BW;B. A parabolic subgroup of G is called of type I if it is conjugate to P;. Let X; be the
set of parabolic subgroups of type I, which has a canonical structure of a smooth projective
k-scheme. Let J be another subset of A. We write 9z for grg—! for g,z € G. Consider the
diagonal action of G on X; x X; and let Or;(w) denote the orbit of (Pr,” Py). Then we
have

X[XXJ: |_| O[J(’LU). (1)
weW\W/W;

For w € Wi \W/W, we denote by @ the minimal-length representative in w (cf. [4], Ch.IV,
Ex. §1, 3). The orbit Oy (w) is called distinguished if I = .J. This is equivalent to that
there exists a representative v in w satisfying I = vJ (such v turns out to be w).

The (generalized) Deligne-Lusztig variety X(w) associated to w € W \W/W, is the
locally closed subscheme of X consisting of parabolic subgroups P such that (P, F(P)) €
Or,01(w). In other words X;(w) is the intersection of Oy ,r(w) and the graph of F'. We call
X1 (w) distinguished if I = wol.

The affineness of X(w) is one of our main concern. In the case of I = (), we have
several criterions for the affineness. The original paper [5] has already provided a strong
combinatorial criterion ([5], Theorem 9.7), which in particular implies that X (w) is affine



if ¢ is at least the Coxeter number. Orlik and Rapoport [11] conjectured that X (w) is
affine if w is minimal in its F-conjugacy class, with a proof in the case of the split classical
groups. This conjecture was proved in general by He [8]. Bonnafé and Rouquier [3] found a
new criterion, which implies Orlik-Rapoport conjecture. Here we remark that no non-affine
Deligne-Lusztig variety has been found so far. However for general I (without I = wol),
there are many examples of non-affine X;(w) (cf. [2], Introduction). This would come from
that the decomposition of the flag variety X into the Deligne-Lusztig varieties is coarse. In
[2] Bédard pointed out this and introduced a finer decomposition:

X = ] xi(w) (2)
welWw
with the set /W of minimal-length representatives of Wr\W, and showed that X" (w) is
isomorphic to the distinguished Deligne-Lusztig variety X j(w) with J :=,s,(wo)™I, see
[2], 11, 13.

Now it would be natural to expect that almost all distinguished Deligne-Lusztig varieties
are affine. In this paper, we confirm it by extending the Deligne-Lusztig criterion to our
general parabolic case, and also refine a little bit the criterion (even in the case I = (§) in
order to include all distinguished Deligne-Lusztig varieties in rank-2 groups.
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2 The generalized Deligne-Lusztig sections

In this section, we construct a global section of a certain invertible sheaf on Oy (w) and
investigate a prolongation of this section to the Zariski closure of O (w) in X; x X .

2.1 Construction

Let I be a subset of A. We denote by L; the standard Levi subgroup of P, which is
the centralizer in G' of T, where T; is the identity component of (,.; Ker(a). For an
algebraic group H, let X(H) denote the character group Hom(H, G,,) and let Y(H) denote
the cocharacter group Hom(G,,,, H). We freely use the identifications

X(Pp) = X(L) = {A € X(T) | (\,a¥) =0 for a € I}, (3)

which are induced by the restriction maps (cf. [9], II, 1.18). Here ( , ) is the canonical
pairing X(T) x Y(T) = Z and o € Y(T) is the coroot of « (cf. [5], 5.1).

Let w € W. Let A € X(Pr). Consider the morphism p : G — O (w) sending g to
9(Py," Py), which is a Py N* Py-torsor on Oy (w). We define an invertible sheaf £};(A) on
Ors(w) by

ELNWV) ={f € Oprny (0™ (V) | flgz) = Ma) " f(g) for all z € Pr 0" Ps} (4)
for any open subscheme V' of Oy ;(w). We have a commutative diagram:

P pry

O[J(’w) X[



where sw sends (P, Q) € Or;(w) to (Q, P) € O r(w™1).
Lemma 2.1.1. There exists an isomorphism of invertible sheaves on Oy (w)
(N —— sw* &Y (wmiN).

Proof. Let V' be an open subscheme of Orj(w). Let fi € £(N)(V). To fi we can as-
sociate fy € Sylfl(w_lA)(sw(V)) as follows. For any h € G mapped into sw(V) we set
fo(h) = fi(hp~1). This defines an element of sw* 5}”{1(10_1/\), since G — Oyr(w™1) is a
P;N v P-torsor and we have fo(hy) = fi(hi ' ad(i)(y)) = Aad(d)(y)) =L f1(hi 1) =

(w=N\)(y) "' f2(h) for any y € Py N Py O
Consider the L;-torsor
m:G/U —— XJ. (5)
Let £;(\) be the invertible sheaf on X defined by
LiNV) ={f € Op-r(v) (@ (V) | flgz) = Mx) ™" f(g) for all = € L} (6)

for any open subscheme V of X;.

Proposition 2.1.2. Assume that P; and *Pj; have a common Levi subgroup. For any
A € X(Pr), we have an isomorphism W (i) : pri L1(A) — pri Li(w™IA) on Oy (w).

Proof. We claim that there exists a canonical isomorphism £}%(X) ~ prj £;()). Indeed
let V be any open subscheme of O (w) and set V' = pry (V). The morphism p~1(V) —
7 1(V')x v+ V (an open base-change of G — G/U; x x, Or;(w)) is the quotient by UrN% P;.
We also have PrN*Py; = L;(UyN"Py). Hence we have

{F € Onms (@ (V")) | flgz) = M)~ f(9),x € L1} ®o,.v) Ov(V)
{h€ 01 (p™ (V) | h(gz) = Ma) ' h(g).x € Pr 1V Py}
= ).

pri Lr(A)(V)

12

Similarly we have sw* 5}”171(111_1)\) ~ pri L;(w™'N). Hence the proposition follows from
Lemma 2.1.1. O

Remark 2.1.3. (1) If I = wJ, then P and “P; have a common Levi subgroup, see [2],
11, 7.

(2) For at e T, we have U(tw) = A(t)¥(w). We do not need to care about the choice of
w, since the multiplication by non-zero constant causes nothing in our arguments. We
remark also that ¥(w) (up to constant multiplication) depends only on the class of w

in W[\W/WJ

2.2 Prolongation

Let w € W. Assume I = wJ. We fix a reduced expression of w. Let v be any element of
WirwW . We choose a reduced expression v = s - - - s such that for some ¢,d (1 < ¢ <d </¥)
we have s; € Wy for i < cand s; € Wy for i > d and w = s.---sq that is the fixed
reduced expression of w, see [4], Ch.IV, Ex. §1, 3. (One may take d = ¢, since we have
WrwW; = Wrw by the assumption I = wJ.) We write v = v;s;v}, where v; = s1---5;_1
and v} = s;41 - s¢. Let a; € A be the root associated to s;. The set @ (v) = ®T Novd~ is
equal to {v;a; }¢_, (cf. [4], Ch. VI, §1, 6, Cor.2). Let

ki ®T(v) —— WA\W/W; (7)



be the map sending v;a; to the class of v;v].
Let (I) be the submodule of X(T') generated by elements of I. Set ¥; = @\ (I) and
YE = @*\ (I). Put f (v) :=SF NoX;. Let

DY(v) ={AeX(P)®Q| (A a)>0foracXf(v)} (8)
and Dj(v) the set defined by replacing > in (8) by >. For A € D;(v), we set
R}(v) = {a € Tf(v) | (Aa¥) > 0} )

and put 97 (v) := k(R}(v)). As W - X7 (v) is independent of the choice of v € WwWy,
so are DY(v) and Wy - R}(v). Also 07 (v) is independent of the choice of v and its reduced
expression as above.

Proposition 2.2.1. Let A\ € X(P;). The isomorphism W(w) : pri L1(\) — prs Ly(w™1N)
(obtained in Proposition 2.1.2 with Remark 2.1.3) extends over the closure of Oyy(w) in

X1 x Xy if and only if X € Dy(w); and then it vanishes precisely on the closures of Ory(w')
for w' € 07 (w).

Proof. Let Z be the closure of Ory(w). The normality of Schubert varieties ([1] and [12])
implies that Z is normal. Indeed let S be the closure of PywP;/P; in X ; and set X = Xy;
we have that S is normal since it is the image by 7; : X — X of the Schubert variety
in X associated to the longest element v in WywWj (cf. [10], Ch. 8, Ex. 2.11); we have
Z = p2(¢7(S)) with

= x Xy —2 s Xy, (10)

(gPrg=",2)+(g,x) (g,@)—~g~ '
whence Z is normal (cf. [10], Ch. 8, 2.25 and Ex. 2.11).
We choose a reduced expression v = sy ---s¢ of the longest element v of W;wWj, as
in the beginning of this subsection. Let Y be the closure of O(v) in X x X. Recall the

X[XXJ

Hansen-Demazure desingularization of Y. We inductively define O(sy,...,s;) for 1 <i </
by
0(81,...,32‘)20(51,...,81_1) Xx O(Si) (11)
with O() = X. We have an iterated fiber space
O(81,-+-,80) = O(81,...,80-1) = -+ — O(s1) = X. (12)
Let D; be the divisor on O(s1,...,s¢) obtained as the inverse image of the divisor on

O(s1,...,8;) defined by O(1) C O(s;). Let f be the morphism O(sy,...,s;) — Y sending
(Bo, - .., By) to (B, Be). This is a desingularization of ¥ and the union D of D; (1 <i < ¢)
is a normal crossing divisor with O(sy,...,s;)\ D =~ O(v).

We have ;1 (Or(w)) = Ueew,ww, O(x), whose closure is Y. In [5], (9.5) it was proved
that the section 77 ¥(w) extends to Y if and only if A € Dy(v). The latter condition is
equivalent to A € Dy(w), since A € X(Py). The former condition is equivalent to that ¥(w)
extends to the closure Z of Oy ;(w), since 77 is proper with connected fibers (~ P;/B) and Z
is normal. Moreover as in the proof of [5], (9.5) the order along D; of f*7}¥(w) (considered
as a rational function) is equal to (), (v;a;)Y), where v; = s1 -+ s;_1 as above. This implies
that W(w) vanishes only on the closures of Oy ;(w') for w’ € 9 (v) = 9} (w). O

3 The affineness of distinguished Deligne-Lusztig vari-
eties

We state and prove our results on the (quasi-)affineness of the distinguished Deligne-Lusztig
varieties.



3.1 The quasi-affineness

Before dealing with the affineness, we give a remark about the quasi-affineness. Although
Theorem 3.1.1 below looks a part of the folkfore (cf. Remark 3.1.2), it would be meaningful
to give a proof along the original approach by Haastert [7].

Let I be a subset of A. Set II; = A\ I. We define the chamber in X(Pr) by

CY ={p e X(Pr | (") >0 for a € TI;}. (13)

Let F'* be the endomorphism of X(T") sending z to the composition x o F'. Let F, be the
endomorphism of Y (7)) sending y to the composition F oy. By [15], (11.2), there exists a
collection of powers ¢(a) (a € ®) of p such that F*o(a) = g(a)a in X(T), see loc. cit. §11
for the details of g(a). We have F.(a") = ¢(a)(oca)Y, since

(0B, Fu(a¥)) = (F*of,a”) = q(B)(B,a") = q(a)(op, (ca)”) (14)

for any 8 € ®, where the last equality is proven in the proof of [15], (11.5).
Let w € W. Assume I = wol. Then the endomorphism F*w~! of X(7T') induces an
endomorphism of X(Pr), since for A € X(Pr) and for a € I we have

(Frw™ha¥) = (A, wFa(aV)) = g(@)(h, (woa)”) =0. (15)
Theorem 3.1.1. All distinguished X(w) are quasi-affine.

Proof. Let L,, be the endomorphism on X(7T') sending p to F*w~!y— u. We first claim that
L, is injective. Consider the endomorphism “F of G sending = to wF(x)w~!. Since some
power of ¥ F' is a composition of the frobenius map and an inner automorphism, the kernel of
wF is finite. Applying [15], (10.1) to “F on T, the endomorphism of T sending ¢ to t ~** F'(t)
is surjective. This implies that L,, on X(T") is injective. Then the endomorphism on X(Pr)
obtained by restricting L., to X(Pr) is also injective. Hence there exists A € X(Pr) such
that L, (\) € —CY. This means that the invertible sheaf £ associated to L, (\) is ample.
It follows from Proposition 2.1.2 that the restriction of ¥(w) to X;(w) gives a no-where
vanishing section of £ on Xj(w), namely £ is isomorphic to the structure sheaf over Xj(w).
Hence X;(w) is quasi-affine by [6], 5.1.2 on p. 94. O

Remark 3.1.2. Here is an alternative proof of this theorem, which the author learned from
one of the referees. Consider

Yi(w):={g€G|g  Fgecwly,}/UN"Uyy,

which is a locally closed subvariety of G/U;. Using I = wol, we have that X;(w) is the
quotient of Y7(w) by the finite group consisting of * F-fixed points on L;. The theorem
follows from the facts that G/U; is quasi-affine ([13], Theorem 3) and that the quotient of
a quasi-affine variety by a finite group is also quasi-affine ([13], Lemma 2 to Theorem 1 and
[14], 111, §3, 12).

3.2 A criterion for the affineness
Let w € W. We assume I = wol. Let A € Dr(w) and set
Xpw) =X (w)— | J Xi(v). (16)
vedp (w)

Theorem 3.2.1. Let J be the smallest subset of A containing I with F*w='X — X € —CY.
If the restriction to X7 (w) of 717 : Xr — X is quasi-finite, then X7 (w) is affine.



Remark 3.2.2. (1) If there exists A € D;(w) such that I = J (i.e., F*w™ A=\ € —C?),
then the quasi-finiteness condition is trivially satisfied. In this case X (w) is affine.

(2) Let w’ € W]\W/Wa[ with X](w/) C XI)‘(’U}) and set C(w’) = Prw’ -1- That T]J|X1(w/)
is quasi-finite is equivalent to that for every x € C(w’) there are only finitely many
h € P;/Py such that h™'xFh € C(w'). In particular every fiber of T[l]‘X;\(w) consists

of one point if and only if for every w’ as above and for every u € W; \ Wi, we have
uIC(w ) FunC(w') = 0.

(3) If X (w) is affine, then X(w) is affine. In general, we claim that for any affine scheme
X which is regular in codimension one and for any locally principal closed subscheme Y
of X associated to a Cartier divisor D, we have that X \Y is affine. Since any invertible
sheaf on an affine scheme is ample, we have an immersion X — P? associated to some
power of £(D). Let X be the closure of the image. Then X \ Y is isomorphic to the
intersection of two affine subschemes X and X \ H for a hyperplane H in PY. The
claim follows from the well-known fact that the intersection of open affine subschemes
of a scheme separated over an affine scheme is affine.

Proof of Theorem 3.2.1. Put Y = X(w). Let Z be the closure of Y in X;. Since we have
XMw) = XM w) for any natural number n, we if necessary replace A by nA so that A
belongs to X(P;). Let £ be the invertible sheaf associated to F*w~=*X — X. Let V be the
open subscheme of P(H%(Z, £)*) where ¥ (1) does not vanish. By Proposition 2.2.1 we have
a Cartesian product:

Y v v

N

7 ————=P(H(Z,L)").

Note that V' is affine and that 1 is proper (since ¢ is proper). Hence, in order to see that
Y is affine, it suffices to show that 3 is quasi-finite. Let z be a point of the image of
. Let y € Y be any preimage of z. Let ¢ be a morphism Y — X; — P(H(X,, £)*)
determined by L. Since H°(Z, L) contains every element obtained by restricting an element
of H%(Xy, L), the point 2’ := ¢(y) is determined by z. This means ¥ ~(z) C ¢~ (z').
Since F*w™'A — X € —C9, the morphism ¢ factors as Y — X; — X; — P(H°(X, £)*).
Hence the quasi-finiteness of the restriction to X7 (w) of 777 : X; — X7 shows that 1 ~!(z)
is finite. O

Lemma 3.2.3. Let A € X(Pr)g. If F*w™'\ € —C?, then we have X\ € DY (w).

Proof. Let a € £f(w) (= f NnwX,;). Put B := (wo)"la. Since B € X}, we have
N oYy =q(B)"HF*w i\ BY) > 0. O

We write II; = {a1,...,a,} so that II; N wZL = {o,...,a.} and II; NwX_; =
{@es1s- o ar}. Put B = (wo)"ta;. Note that 8; € ©F fori < cand 8; € ¥} fori > c. Let
w; be the fundamental weight corresponding to «o; for 1 < ¢ < r.

Corollary 3.2.4. If q(8) > >_i_,{w;, 8) for every B € {B1,...,B:}, then Xi(w) is affine.

Proof. Put p = Z;Zl ejw; with positive rational numbers €;. Let A be the element of
X(Pr)g with 4 = —F*w~!\. By the above lemma we have A € D%(w). By Remark 3.2.2,
(1), it suffices to show that F*w™A — X € —C? for some choice of ; (j = 1,...,7). We

have

(Fru™'A = A o) = () +a(B:) 7' 6) = —ei+a(B:) 7' Y ejlws, B). (A7)
j=1



For i > ¢, this is negative since 3; € £ . For i < ¢, the assumption ¢(3;) > > i_, (wi, 8Y)
implies that (F*w= '\ — X o)) <0 for e; = --- = g, = 1 and sufficiently small e.41,...,&,.
]

What we can say for |I| > |A| — 2 is as follows.
Corollary 3.2.5. (1) If|I| = |A| — 1, then X (w) is affine.

(2) Assume |I| = |A| —2. We choose ai,as € 11 so that 31 > B2 with 8; = (wo) ' ay.
Assume that (w1, Y) < q(B1) if w# 1. Then X (w) is affine.

Proof. (1) If ¢ = 0, then this follows from Corollary 3.2.4. If ¢ = 1, then w stabilizes %7,
whence w = 1; then X;(w) consists of finitely many points.

(2) If ¢ < 1, then this follows from Corollary 3.2.4 and the assumption (w1, 8Y) < q(f1). If
¢ = 2, then w stabilizes E}r, whence w = 1; then X;(w) consists of finitely many points. [

Here is a remark to Corollary 3.2.5, (2).

Remark 3.2.6. Assume that oy and as are in a o-stable irreducible component of @, say
®’. Let us look at the condition (w1, 8)) < q(B1) for each type of (®’,0). First assume that
o preserves lengths of roots (in this case q(a) = ¢ for all @ € ®'). The number (wq, 8)) is
at most the biggest number m of (w, 3Y) where w is a fundamental weight and 3 is a root
with the same length as the simple root a corresponding to w. This number m is 1 for A,
and B, and 2 for B,,,C,, and D,, (n > 3), and 3 for E4, and 4 for E7, and 6 for Fs, and 3
for Fy, and 2 for G5. If o does not preserve lengths of roots, the maximal possible number
of (w1, BY) is 1 for 2By, and 4 for 2Fy, and 3 for 2G.

Corollary 3.2.7. All distinguished Deligne-Lusztig varieties associated to rank-2 groups are

affine.

Proof. Tt remains to study the case of Gy with ¢ = 2 (and I = ()) and the case of 2G»
with ¢ = v/3 (and I = (), since to the other cases Corollary 3.2.5 is applicable by Remark
3.2.6. In a straightforward way, one can check that the w’s to which Corollary 3.2.5 is not
applicable are of length 3 for G5 and of length 2 or 4 for 2G5. In order to reduce cases,
we choose a1, an € A so that 81 > B2 with 3; = (wo) la;. Let s; and sy be the simple
reflections corresponding to a; and s respectively. The above w’s are expressed as s25152
for G5 and as s251 Or S9515251 for 2Gs. (Two cases in each are treated simultaneously.)
Let A € X(P;)g with w; = —F*w™'A. By Lemma 3.2.3, we have A € D;(w). Now we
apply Theorem 3.2.1 to \. We have J = {a;} and X*(w) = X (w)U X (w'), where w' = 5251
in the Gy-case, w’ = sy in the 2Ga-case with £(w) = 2 and w’ = sgs152 in the 2Gy-case
with £(w) = 4. Tt is clear from [4] §2, 1, (3) and (3') on p.16 that s;*C(v)Fs; NC(v) = )
for v = w and w’. Hence it follows from Remark 3.2.2, (2) that every fiber of 75| X*(w)
consists of one element. Thus X*(w) is affine by Theorem 3.2.1; hence X (w) is affine, see
Remark 3.2.2, (3). O
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