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Abstract

We consider Deligne-Lusztig varieties in the variety of parabolic subgroups with
a fixed type. In this paper, we give a criterion for the affineness of distinguished
Deligne-Lusztig varieties, extending and refining the original Deligne-Lusztig criterion.
In particular we show that distinguished Deligne-Lusztig varieties are affine except
possibly for small q, and that all distinguished Deligne-Lusztig varieties associated to
rank-2 groups are affine.

1 Introduction

Let p be a prime. Let k0 be a finite field of characteristic p. Let k be an algebraic closure
of k0. Let G0 be a connected reductive algebraic group over k0 and set G = G0 × Spec(k).
Let frob be the Frobenius map on G0. Let F be an endomorphism of G over k such that
F d = frob× Spec(k) for some d. Let q be the positive real number with qd = |k0|.

We fix an F -stable Borel subgroup B and a maximal torus T contained in B. Let W
be the Weyl group NG(T )/T . We write ẇ for a representative in NG(T ) of w ∈ W . Let
Φ denote the set of roots. Let Φ+ (resp. Φ−) be the set of positive roots (resp. the set of
negative roots) with respect to B. We denote by ∆ the set of simple roots. Let Uα be the
root group associated to α ∈ Φ. The endomorphism F induces a permutation σ of Φ so that
F sends Uα to Uσ(α). Since B is F -stable, σ stabilizes Φ+ and hence ∆.

Let I be a subset of ∆. Write WI for the subgroup of W generated by the simple
reflections sα associated to α ∈ I. We denote by PI the standard parabolic subgroup
BWIB. A parabolic subgroup of G is called of type I if it is conjugate to PI . Let XI be the
set of parabolic subgroups of type I, which has a canonical structure of a smooth projective
k-scheme. Let J be another subset of ∆. We write gx for gxg−1 for g, x ∈ G. Consider the
diagonal action of G on XI × XJ and let OIJ(w) denote the orbit of (PI ,

ẇPJ ). Then we
have

XI ×XJ =
⊔

w∈WI\W/WJ

OIJ(w). (1)

For w ∈WI\W/WJ , we denote by w̃ the minimal-length representative in w (cf. [4], Ch. IV,
Ex. §1, 3). The orbit OIJ(w) is called distinguished if I = w̃J . This is equivalent to that
there exists a representative v in w satisfying I = vJ (such v turns out to be w̃).

The (generalized) Deligne-Lusztig variety XI(w) associated to w ∈ WI\W/WσI is the
locally closed subscheme of XI consisting of parabolic subgroups P such that (P, F (P )) ∈
OI,σI(w). In other words XI(w) is the intersection of OI,σI(w) and the graph of F . We call
XI(w) distinguished if I = w̃σI.

The affineness of XI(w) is one of our main concern. In the case of I = ∅, we have
several criterions for the affineness. The original paper [5] has already provided a strong
combinatorial criterion ([5], Theorem 9.7), which in particular implies that X(w) is affine
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if q is at least the Coxeter number. Orlik and Rapoport [11] conjectured that X(w) is
affine if w is minimal in its F -conjugacy class, with a proof in the case of the split classical
groups. This conjecture was proved in general by He [8]. Bonnafé and Rouquier [3] found a
new criterion, which implies Orlik-Rapoport conjecture. Here we remark that no non-affine
Deligne-Lusztig variety has been found so far. However for general I (without I = w̃σI),
there are many examples of non-affine XI(w) (cf. [2], Introduction). This would come from
that the decomposition of the flag variety XI into the Deligne-Lusztig varieties is coarse. In
[2] Bédard pointed out this and introduced a finer decomposition:

XI =
⨿

w∈IW

Xfin
I (w) (2)

with the set IW of minimal-length representatives of WI\W , and showed that Xfin
I (w) is

isomorphic to the distinguished Deligne-Lusztig variety XJ(w) with J :=
∩
n≥0(wσ)

nI, see
[2], II, 13.

Now it would be natural to expect that almost all distinguished Deligne-Lusztig varieties
are affine. In this paper, we confirm it by extending the Deligne-Lusztig criterion to our
general parabolic case, and also refine a little bit the criterion (even in the case I = ∅) in
order to include all distinguished Deligne-Lusztig varieties in rank-2 groups.
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2 The generalized Deligne-Lusztig sections

In this section, we construct a global section of a certain invertible sheaf on OIJ(w) and
investigate a prolongation of this section to the Zariski closure of OIJ (w) in XI ×XJ .

2.1 Construction

Let I be a subset of ∆. We denote by LI the standard Levi subgroup of PI , which is
the centralizer in G of TI , where TI is the identity component of

∩
α∈I Ker(α). For an

algebraic group H, let X(H) denote the character group Hom(H,Gm) and let Y(H) denote
the cocharacter group Hom(Gm,H). We freely use the identifications

X(PI) = X(LI) = {λ ∈ X(T ) | ⟨λ, α∨⟩ = 0 for α ∈ I}, (3)

which are induced by the restriction maps (cf. [9], II, 1.18). Here ⟨ , ⟩ is the canonical
pairing X(T )×Y(T )→ Z and α∨ ∈ Y(T ) is the coroot of α (cf. [5], 5.1).

Let w ∈ W . Let λ ∈ X(PI). Consider the morphism ρ : G → OIJ(w) sending g to
g(PI ,

wPJ), which is a PI ∩ wPJ -torsor on OIJ(w). We define an invertible sheaf EwIJ(λ) on
OIJ(w) by

EwIJ(λ)(V ) = {f ∈ Oρ−1(V )(ρ
−1(V )) | f(gx) = λ(x)−1f(g) for all x ∈ PI ∩ wPJ} (4)

for any open subscheme V of OIJ(w). We have a commutative diagram:

G
ρ //

·ẇ
��

OIJ(w)

sw

��

pr1 //

pr2

((QQQQQQQQQQQQQQ
XI

G // OJI(w−1) // XJ ,

2



where sw sends (P,Q) ∈ OIJ (w) to (Q,P ) ∈ OJI(w−1).

Lemma 2.1.1. There exists an isomorphism of invertible sheaves on OIJ (w)

EwIJ (λ) −−−−→ sw∗ Ew−1

JI (w−1λ).

Proof. Let V be an open subscheme of OIJ(w). Let f1 ∈ EwIJ (λ)(V ). To f1 we can as-

sociate f2 ∈ Ew
−1

JI (w−1λ)(sw(V )) as follows. For any h ∈ G mapped into sw(V ) we set

f2(h) = f1(hẇ
−1). This defines an element of sw∗ Ew−1

JI (w−1λ), since G → OJI(w
−1) is a

PJ ∩ w−1

PI -torsor and we have f2(hy) = f1(hẇ
−1 ad(ẇ)(y)) = λ(ad(ẇ)(y))−1f1(hẇ

−1) =

(w−1λ)(y)−1f2(h) for any y ∈ PJ ∩ w
−1

PI .

Consider the LI -torsor
π : G/UI −−−−→ XI . (5)

Let LI(λ) be the invertible sheaf on XI defined by

LI(λ)(V ) = {f ∈ Oπ−1(V )(π
−1(V )) | f(gx) = λ(x)−1f(g) for all x ∈ LI} (6)

for any open subscheme V of XI .

Proposition 2.1.2. Assume that PI and wPJ have a common Levi subgroup. For any
λ ∈ X(PI), we have an isomorphism Ψ(ẇ) : pr∗1 LI(λ)→ pr∗2 LJ (w−1λ) on OIJ(w).

Proof. We claim that there exists a canonical isomorphism EwIJ(λ) ≃ pr∗1 LI(λ). Indeed
let V be any open subscheme of OIJ (w) and set V ′ = pr1(V ). The morphism ρ−1(V ) →
π−1(V ′)×V ′ V (an open base-change of G→ G/UI×XI

OIJ (w)) is the quotient by UI∩wPJ .
We also have PI ∩ wPJ = LI(UI ∩ wPJ). Hence we have

pr∗1 LI(λ)(V ) = {f ∈ Oπ−1(V ′)(π
−1(V ′)) | f(gx) = λ(x)−1f(g), x ∈ LI} ⊗OV ′ (V ′) OV (V )

≃ {h ∈ Oρ−1(V )(ρ
−1(V )) | h(gx) = λ(x)−1h(g), x ∈ PI ∩ wPJ}

= EwIJ(λ)(V ).

Similarly we have sw∗ Ew−1

JI (w−1λ) ≃ pr∗2 LJ(w−1λ). Hence the proposition follows from
Lemma 2.1.1.

Remark 2.1.3. (1) If I = wJ , then PI and wPJ have a common Levi subgroup, see [2],
II, 7.

(2) For a t ∈ T , we have Ψ(tẇ) = λ(t)Ψ(ẇ). We do not need to care about the choice of
ẇ, since the multiplication by non-zero constant causes nothing in our arguments. We
remark also that Ψ(ẇ) (up to constant multiplication) depends only on the class of w
in WI\W/WJ .

2.2 Prolongation

Let w ∈ W . Assume I = wJ . We fix a reduced expression of w. Let v be any element of
WIwWJ . We choose a reduced expression v = s1 · · · sℓ such that for some c, d (1 ≤ c ≤ d ≤ ℓ)
we have si ∈ WI for i < c and si ∈ WJ for i > d and w = sc · · · sd that is the fixed
reduced expression of w, see [4], Ch. IV, Ex. §1, 3. (One may take d = ℓ, since we have
WIwWJ = WIw by the assumption I = wJ .) We write v = visiv

′
i, where vi = s1 · · · si−1

and v′i = si+1 · · · sℓ. Let αi ∈ ∆ be the root associated to si. The set Φ+(v) = Φ+ ∩ vΦ− is
equal to {viαi}ℓi=1 (cf. [4], Ch.VI, §1, 6, Cor. 2). Let

κ : Φ+(v) −−−−→ WI\W/WJ (7)
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be the map sending viαi to the class of viv
′
i.

Let ⟨I⟩ be the submodule of X(T ) generated by elements of I. Set ΣI = Φ \ ⟨I⟩ and
Σ±I = Φ± \ ⟨I⟩. Put Σ+

I (v) := Σ+
I ∩ vΣ

−
J . Let

D0
I (v) = {λ ∈ X(PI)⊗Q | ⟨λ, α∨⟩ > 0 for α ∈ Σ+

I (v)} (8)

and DI(v) the set defined by replacing > in (8) by ≥. For λ ∈ DI(v), we set

RλI (v) =
{
α ∈ Σ+

I (v) | ⟨λ, α
∨⟩ > 0

}
(9)

and put ∂λI (v) := κ(RλI (v)). As WI · Σ+
I (v) is independent of the choice of v ∈ WIwWJ ,

so are D0
I (v) and WI · RλI (v). Also ∂λI (v) is independent of the choice of v and its reduced

expression as above.

Proposition 2.2.1. Let λ ∈ X(PI). The isomorphism Ψ(ẇ) : pr∗1 LI(λ) → pr∗2 LJ(w−1λ)
(obtained in Proposition 2.1.2 with Remark 2.1.3) extends over the closure of OIJ(w) in
XI ×XJ if and only if λ ∈ DI(w); and then it vanishes precisely on the closures of OIJ(w

′)
for w′ ∈ ∂λI (w).

Proof. Let Z be the closure of OIJ(w). The normality of Schubert varieties ([1] and [12])
implies that Z is normal. Indeed let S be the closure of PIwPJ/PJ in XJ and set X = X∅;
we have that S is normal since it is the image by τJ : X → XJ of the Schubert variety
in X associated to the longest element v in WIwWJ (cf. [10], Ch. 8, Ex. 2.11); we have
Z = ϕ2(ϕ

−1
1 (S)) with

XI ×XJ
ϕ2←−−−−−−−−−−−−

(gPIg−1,x)← [(g,x) G×XJ
ϕ1−−−−−−−−→

(g,x) 7→g−1x
XJ , (10)

whence Z is normal (cf. [10], Ch. 8, 2.25 and Ex. 2.11).
We choose a reduced expression v = s1 · · · sℓ of the longest element v of WIwWJ , as

in the beginning of this subsection. Let Y be the closure of O(v) in X × X. Recall the
Hansen-Demazure desingularization of Y . We inductively define O(s1, . . . , si) for 1 ≤ i ≤ ℓ
by

O(s1, . . . , si) = O(s1, . . . , si−1)×X O(si) (11)

with O() = X. We have an iterated fiber space

O(s1, . . . , sℓ)→ O(s1, . . . , sℓ−1)→ · · · → O(s1)→ X. (12)

Let Di be the divisor on O(s1, . . . , sℓ) obtained as the inverse image of the divisor on
O(s1, . . . , si) defined by O(1) ⊂ O(si). Let f be the morphism O(s1, . . . , sℓ) → Y sending
(B0, . . . , Bℓ) to (B0, Bℓ). This is a desingularization of Y and the union D of Di (1 ≤ i ≤ ℓ)
is a normal crossing divisor with O(s1, . . . , sℓ) \D ≃ O(v).

We have τ−1I (OIJ(w)) =
∪
x∈WIwWJ

O(x), whose closure is Y . In [5], (9.5) it was proved
that the section τ∗IΨ(ẇ) extends to Y if and only if λ ∈ D∅(v). The latter condition is
equivalent to λ ∈ DI(w), since λ ∈ X(PI). The former condition is equivalent to that Ψ(ẇ)
extends to the closure Z of OIJ (w), since τI is proper with connected fibers (≃ PI/B) and Z
is normal. Moreover as in the proof of [5], (9.5) the order along Di of f

∗τ∗IΨ(ẇ) (considered
as a rational function) is equal to ⟨λ, (viαi)∨⟩, where vi = s1 · · · si−1 as above. This implies
that Ψ(ẇ) vanishes only on the closures of OIJ(w

′) for w′ ∈ ∂λI (v) = ∂λI (w).

3 The affineness of distinguished Deligne-Lusztig vari-
eties

We state and prove our results on the (quasi-)affineness of the distinguished Deligne-Lusztig
varieties.
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3.1 The quasi-affineness

Before dealing with the affineness, we give a remark about the quasi-affineness. Although
Theorem 3.1.1 below looks a part of the folkfore (cf. Remark 3.1.2), it would be meaningful
to give a proof along the original approach by Haastert [7].

Let I be a subset of ∆. Set ΠI = ∆ \ I. We define the chamber in X(PI) by

C0
I = {µ ∈ X(PI)R | ⟨µ, α∨⟩ > 0 for α ∈ ΠI}. (13)

Let F ∗ be the endomorphism of X(T ) sending x to the composition x ◦ F . Let F∗ be the
endomorphism of Y(T ) sending y to the composition F ◦ y. By [15], (11.2), there exists a
collection of powers q(α) (α ∈ Φ) of p such that F ∗σ(α) = q(α)α in X(T ), see loc. cit. §11
for the details of q(α). We have F∗(α

∨) = q(α)(σα)∨, since

⟨σβ, F∗(α∨)⟩ = ⟨F ∗σβ, α∨⟩ = q(β)⟨β, α∨⟩ = q(α)⟨σβ, (σα)∨⟩ (14)

for any β ∈ Φ, where the last equality is proven in the proof of [15], (11.5).
Let w ∈ W . Assume I = wσI. Then the endomorphism F ∗w−1 of X(T ) induces an

endomorphism of X(PI), since for λ ∈ X(PI) and for α ∈ I we have

⟨F ∗w−1λ, α∨⟩ = ⟨λ,wF∗(α∨)⟩ = q(α)⟨λ, (wσα)∨⟩ = 0. (15)

Theorem 3.1.1. All distinguished XI(w) are quasi-affine.

Proof. Let Lw be the endomorphism on X(T ) sending µ to F ∗w−1µ−µ. We first claim that
Lw is injective. Consider the endomorphism wF of G sending x to wF (x)w−1. Since some
power of wF is a composition of the frobenius map and an inner automorphism, the kernel of
wF is finite. Applying [15], (10.1) to wF on T , the endomorphism of T sending t to t−1wF (t)
is surjective. This implies that Lw on X(T ) is injective. Then the endomorphism on X(PI)
obtained by restricting Lw to X(PI) is also injective. Hence there exists λ ∈ X(PI) such
that Lw(λ) ∈ −C0

I . This means that the invertible sheaf L associated to Lw(λ) is ample.
It follows from Proposition 2.1.2 that the restriction of Ψ(ẇ) to XI(w) gives a no-where
vanishing section of L on XI(w), namely L is isomorphic to the structure sheaf over XI(w).
Hence XI(w) is quasi-affine by [6], 5.1.2 on p. 94.

Remark 3.1.2. Here is an alternative proof of this theorem, which the author learned from
one of the referees. Consider

YI(w) := {g ∈ G | g−1Fg ∈ ẇUσI}/UI ∩ ẇUσI ,

which is a locally closed subvariety of G/UI . Using I = wσI, we have that XI(w) is the
quotient of YI(w) by the finite group consisting of wF -fixed points on LI . The theorem
follows from the facts that G/UI is quasi-affine ([13], Theorem 3) and that the quotient of
a quasi-affine variety by a finite group is also quasi-affine ([13], Lemma 2 to Theorem 1 and
[14], III, §3, 12).

3.2 A criterion for the affineness

Let w ∈W . We assume I = wσI. Let λ ∈ DI(w) and set

Xλ
I (w) := XI(w)−

∪
v∈∂λ

I (w)

XI(v). (16)

Theorem 3.2.1. Let J be the smallest subset of ∆ containing I with F ∗w−1λ− λ ∈ −C0
J .

If the restriction to Xλ
I (w) of τIJ : XI → XJ is quasi-finite, then Xλ

I (w) is affine.
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Remark 3.2.2. (1) If there exists λ ∈ DI(w) such that I = J (i.e., F ∗w−1λ−λ ∈ −C0
I ),

then the quasi-finiteness condition is trivially satisfied. In this case Xλ
I (w) is affine.

(2) Let w′ ∈WI\W/WσI withXI(w
′) ⊂ Xλ

I (w) and set C(w′) = PIw
′PσI . That τIJ |XI(w′)

is quasi-finite is equivalent to that for every x ∈ C(w′) there are only finitely many
h ∈ PJ/PI such that h−1xFh ∈ C(w′). In particular every fiber of τIJ |Xλ

I (w) consists

of one point if and only if for every w′ as above and for every u ∈ WJ \WI , we have
u−1C(w′)Fu ∩ C(w′) = ∅.

(3) If Xλ
I (w) is affine, then XI(w) is affine. In general, we claim that for any affine scheme

X which is regular in codimension one and for any locally principal closed subscheme Y
of X associated to a Cartier divisor D, we have that X\Y is affine. Since any invertible
sheaf on an affine scheme is ample, we have an immersion X → PN associated to some
power of L(D). Let X be the closure of the image. Then X \ Y is isomorphic to the
intersection of two affine subschemes X and X \ H for a hyperplane H in PN . The
claim follows from the well-known fact that the intersection of open affine subschemes
of a scheme separated over an affine scheme is affine.

Proof of Theorem 3.2.1. Put Y = Xλ
I (w). Let Z be the closure of Y in XI . Since we have

Xλ
I (w) = Xnλ

I (w) for any natural number n, we if necessary replace λ by nλ so that λ
belongs to X(PI). Let L be the invertible sheaf associated to F ∗w−1λ − λ. Let V be the
open subscheme of P(H0(Z,L)∗) where Ψ(ẇ) does not vanish. By Proposition 2.2.1 we have
a Cartesian product:

Y
ψ //

��

V

��
Z

ϕ // P(H0(Z,L)∗).

Note that V is affine and that ψ is proper (since ϕ is proper). Hence, in order to see that
Y is affine, it suffices to show that ψ is quasi-finite. Let x be a point of the image of
ψ. Let y ∈ Y be any preimage of x. Let φ be a morphism Y ↪→ XI → P(H0(XI ,L)∗)
determined by L. Since H0(Z,L) contains every element obtained by restricting an element
of H0(XI ,L), the point x′ := φ(y) is determined by x. This means ψ−1(x) ⊂ φ−1(x′).
Since F ∗w−1λ − λ ∈ −C0

J , the morphism φ factors as Y ↪→ XI → XJ ↪→ P(H0(XI ,L)∗).
Hence the quasi-finiteness of the restriction to Xλ

I (w) of τIJ : XI → XJ shows that ψ−1(x)
is finite.

Lemma 3.2.3. Let λ ∈ X(PI)Q. If F ∗w−1λ ∈ −C0
I , then we have λ ∈ D0

I (w).

Proof. Let α ∈ Σ+
I (w) (= Σ+

I ∩ wΣ
−
σI). Put β := (wσ)−1α. Since β ∈ Σ−I , we have

⟨λ, α∨⟩ = q(β)−1⟨F ∗w−1λ, β∨⟩ > 0.

We write ΠI = {α1, . . . , αr} so that ΠI ∩ wΣ+
σI = {α1, . . . , αc} and ΠI ∩ wΣ−σI =

{αc+1, . . . , αr}. Put βi = (wσ)−1αi. Note that βi ∈ Σ+
I for i ≤ c and βi ∈ Σ−I for i > c. Let

ωi be the fundamental weight corresponding to αi for 1 ≤ i ≤ r.

Corollary 3.2.4. If q(β) >
∑c
i=1⟨ωi, β⟩ for every β ∈ {β1, . . . , βc}, then XI(w) is affine.

Proof. Put µ =
∑r
j=1 εjωj with positive rational numbers εj . Let λ be the element of

X(PI)Q with µ = −F ∗w−1λ. By the above lemma we have λ ∈ D0
I (w). By Remark 3.2.2,

(1), it suffices to show that F ∗w−1λ − λ ∈ −C0
I for some choice of εj (j = 1, . . . , r). We

have

⟨F ∗w−1λ− λ, α∨i ⟩ = ⟨µ,−α∨i + q(βi)
−1β∨i ⟩ = −εi + q(βi)

−1
r∑
j=1

εj⟨ωj , β∨i ⟩. (17)
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For i > c, this is negative since βi ∈ Σ−I . For i ≤ c, the assumption q(βi) >
∑c
i=1⟨ωi, β∨i ⟩

implies that ⟨F ∗w−1λ− λ, α∨i ⟩ < 0 for ε1 = · · · = εc = 1 and sufficiently small εc+1, . . . , εr.

What we can say for |I| ≥ |∆| − 2 is as follows.

Corollary 3.2.5. (1) If |I| = |∆| − 1, then XI(w) is affine.

(2) Assume |I| = |∆| − 2. We choose α1, α2 ∈ ΠI so that β1 > β2 with βi = (wσ)−1αi.
Assume that ⟨ω1, β

∨
1 ⟩ < q(β1) if w ̸= 1. Then XI(w) is affine.

Proof. (1) If c = 0, then this follows from Corollary 3.2.4. If c = 1, then w stabilizes Σ+
I ,

whence w = 1; then XI(w) consists of finitely many points.
(2) If c ≤ 1, then this follows from Corollary 3.2.4 and the assumption ⟨ω1, β

∨
1 ⟩ < q(β1). If

c = 2, then w stabilizes Σ+
I , whence w = 1; then XI(w) consists of finitely many points.

Here is a remark to Corollary 3.2.5, (2).

Remark 3.2.6. Assume that α1 and α2 are in a σ-stable irreducible component of Φ, say
Φ′. Let us look at the condition ⟨ω1, β

∨
1 ⟩ < q(β1) for each type of (Φ′, σ). First assume that

σ preserves lengths of roots (in this case q(α) = q for all α ∈ Φ′). The number ⟨ω1, β
∨
1 ⟩ is

at most the biggest number m of ⟨ω, β∨⟩ where ω is a fundamental weight and β is a root
with the same length as the simple root α corresponding to ω. This number m is 1 for An
and B2, and 2 for Bn, Cn and Dn (n ≥ 3), and 3 for E6, and 4 for E7, and 6 for E8, and 3
for F4, and 2 for G2. If σ does not preserve lengths of roots, the maximal possible number
of ⟨ω1, β

∨
1 ⟩ is 1 for 2B2, and 4 for 2F4, and 3 for 2G2.

Corollary 3.2.7. All distinguished Deligne-Lusztig varieties associated to rank-2 groups are
affine.

Proof. It remains to study the case of G2 with q = 2 (and I = ∅) and the case of 2G2

with q =
√
3 (and I = ∅), since to the other cases Corollary 3.2.5 is applicable by Remark

3.2.6. In a straightforward way, one can check that the w’s to which Corollary 3.2.5 is not
applicable are of length 3 for G2 and of length 2 or 4 for 2G2. In order to reduce cases,
we choose α1, α2 ∈ ∆ so that β1 > β2 with βi = (wσ)−1αi. Let s1 and s2 be the simple
reflections corresponding to α1 and α2 respectively. The above w’s are expressed as s2s1s2
for G2 and as s2s1 or s2s1s2s1 for 2G2. (Two cases in each are treated simultaneously.)

Let λ ∈ X(PI)Q with ω1 = −F ∗w−1λ. By Lemma 3.2.3, we have λ ∈ DI(w). Now we
apply Theorem 3.2.1 to λ. We have J = {α1} and Xλ(w) = X(w)∪X(w′), where w′ = s2s1
in the G2-case, w

′ = s2 in the 2G2-case with ℓ(w) = 2 and w′ = s2s1s2 in the 2G2-case
with ℓ(w) = 4. It is clear from [4] §2, 1, (3) and (3′) on p.16 that s−11 C(v)Fs1 ∩ C(v) = ∅
for v = w and w′. Hence it follows from Remark 3.2.2, (2) that every fiber of τ∅J |Xλ(w)
consists of one element. Thus Xλ(w) is affine by Theorem 3.2.1; hence X(w) is affine, see
Remark 3.2.2, (3).
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